
Оценка эффективности систем управления информационной безопасностью: проблемы и механизмы их решения.

- Минзов Анатолий Степанович, доктор технических профессор кафедры БИТ НИУ «МЭИ»
- Невский Александр Юрьевич, кандидат технических заведующий кафедрой БИТ НИУ МЭИ
- Баронов Олег Рюрикович, кандидат технических наук, доцент кафедры безопасности БИТ НИУ МЭИ

наук

ГОСТ Р ИСО/МЭК 27001-2021 г. Системы менеджмента информационной безопасности. Требования

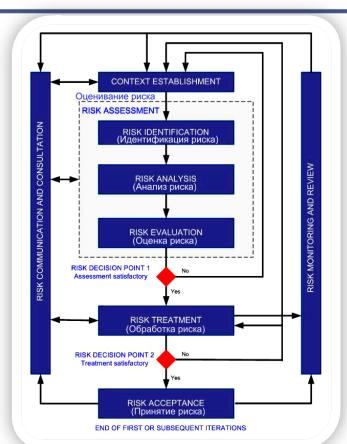
Что мы понимаем под эффективностью СМИБ?

Существует два типа показателей оценки выполнения запланированных действий в СМИБ¹:

- **1.** *Показатели результативности,* которые определяют степень выполнения планируемых мероприятий по обеспечению ИБ.
- **2.** *Показатели эффективности,* отражающие влияние реализации запланированных мероприятий на цели ИБ организации. Основными показателем эффективности являются:
 - 1. Оценка возможного ущерба (*U*).
 - 2. Сокращение затрат (Z) на устранение последствий инцидентов ИБ и восстановление (U-Z)≥0.
 - 3. Обеспечение непрерывности критических процессов.
 - 4. Ограничения на МИБ и другие показатели плана обработки рисков.

¹ ГОСТ Р ИСО/МЭК 27004-2021. Информационные технологии. Мониторинг, оценка зашишенности, анализ и оценивание

Модели управления рисками (ISO-27005)


 $R = A \cap T \cap V$, $A \neq \emptyset$, $T \neq \emptyset$, $Y \neq \emptyset$; <Nt, T, Na, A, Nv, V, M, Var, Mc, Z, [Ka]>

 $2\partial e$ **A, T, V** – активы (оценка ценности), угрозы (оценка возможности) и уязвимости (оценка слабости);

Nt, Na, Nv, M — наименования (коды) угроз, активов, уязвимостей, метрика риска (относительные ед.);

$$m_i = a_i + t_i + v_i$$
;

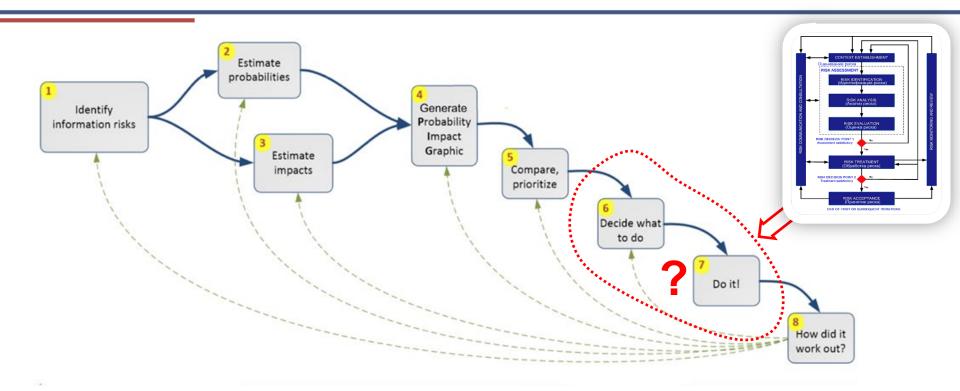
Var, Mc, Z, [Ka] – способ обработки риска, защитные контрмеры, затраты на обработку риска, коэфф. значимости актива.

Задачи, решаемые на этих моделях рисков (1,2)

1.Обоснование системы информационной безопасности на основе упорядочивания и классификации рисков (R) по степени опасности (K) и способу обработки рисков (S):

1.1.
$$\mathbf{R} = \{r_i\}, \ \partial e \ r_i \ge r_{i+1} \ge r_{i+2} \ge \dots \ge r_n$$
.

1.2
$$\forall r_i, (r_i \in \mathbf{R}) \to (r_i \in \mathbf{K}_1) \cup (r_i \in \mathbf{K}_2) \cup (r_i \in \mathbf{K}_3) \dots$$
, где \mathbf{K} – класс опасности риска.


1.3.
$$\forall r_i, (r_i \in S) \to (r_i \in S_1) \cup (r_i \in S_2) \cup (r_i \in S_3) \cup (r_i \in S_4),$$
 где S_1, S_2, S_3, S_4 — способы обработки рисков: сохранение риска (S_1) , снижение риска (S_2) , перенос риска (S_3) , предотвращение риска (S_4) .

Этого явно недостаточно, чтобы оценить корректность плана обработки рисков с позиций администрации организации.

Схема обработки рисков компании ITSEG (ENG)

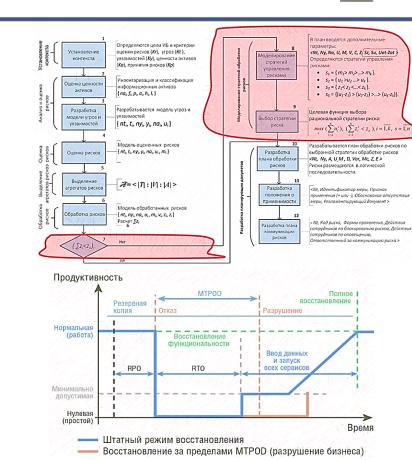
https://www.isect.com

Как оценивается эффективность СМИБ за рубежом?

- **1. ISO 27001, 27005 (Европа).** Описан общий подход оценки оценки предполагаемого ущерба (U) на качественном уровне (ранжирования по шкалам).
- **2. RiskWatch (США).** Основными оценочными показателями являются ожидаемые годовые потери и оценка возврата инвестиций.
- 3. OCTAVE (США). В методике OCTAVE оценивается только предполагаемый ущерб на количественном уровне (денежном эквиваленте ущерба) 'экспертным путем.
- **4. CORAS (США).** Качественная оценка рисков: предполагаемый ущерб инцидента и вероятность его возникновения.
- **5. СКАММ** (Великобритания, с 1985 г.). Основная идея этой технологии управления заключается **в накоплении практического опыта** в форме шаблонов контрмер, активов, комбинаций ущербов, угроз, рисков, типовых политик и других документов.

Модели управления рисками для оценки эффективности плана обработки рисков

3. Параметрическая модель рисков


$$R = (A \cap T \cap Y)$$
, $z \partial e \ A \neq \emptyset$, $T \neq \emptyset$, $Y \neq \emptyset$;
 $\langle Nt, T, Na, A, Nv, V, M, U, Var, Mc, Z, [Ktv], sz, (su), U-Z \rangle$

4. Параметрическая модель рисков для умышленных угроз

$$R = (A \cap T)$$
, ede $A \neq \emptyset$, $T \neq \emptyset$;
< Nt, T, Na, A, U, M, Var, Mc, Zat, [Ktv], sz , su , U - Z >

5. Параметрическая модель рисков при планировании непрерывности бизнес процессов

$$R = (A \cap T \cap Y) \cup (A \cap T)$$
, role $A \neq \emptyset$, $T \neq \emptyset$, $Y \neq \emptyset$; $A \neq \emptyset$, $A \neq$

Критерии эффективности плана обработки рисков

1. План обработки рисков может быть ограничен по затратам $oldsymbol{z}_{O}$

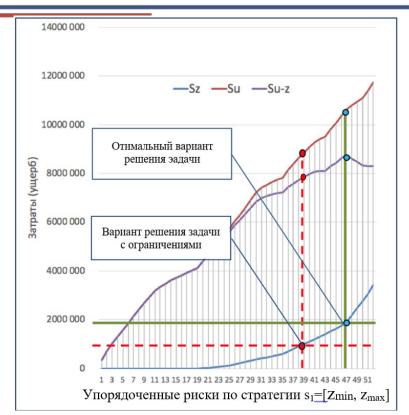
$$Cd_{L} = \left(\sum_{i=1}^{k} z_{i}^{s} < z_{0}\right), i = \overline{1,k}, s = \overline{1,n}.$$

2. План обработки рисков обеспечивает максимальную разницу между оценками возможного ущерба и затрат

$$Cd_2 = \max_{s} \left(\sum_{i=1}^{k} (u_i^s - z_i^s) \right), i = \overline{i, k}, s = \overline{1, n}$$

3. Условно-оптимальный план обработки рисков при максимальном значении возможного ущерба и ограничениях на затраты

$$Cd_4 = \max_{s} \left(\sum_{i=1}^k u_i^s \right), \left(\sum_{i=1}^k z_i^s < z_0 \right), i = \overline{1,k}, s = \overline{1,n}.$$


Откуда взять количественные значения параметров возможного ущерба U?

- 1. Непосредственно с использованием экспертных оценок по каждому риску.
- 2. С использованием метода нечетких множеств задаются параметры классификаций лингвистических переменных, их шкал измерения, форм функций принадлежности и определяются правила их взаимовлияния. Определяются значения (U) и определяются верхние и нижние границы полученных значений рисков.
- 3. Методом имитационного моделирования. С использованием качественного метода оценки параметров рисков в форме лингвистических переменных, переводом их в числовые значения и нахождением метрики рисков в относительных единицах $\mathbf{m} = \mathbf{t} + \mathbf{a} + \mathbf{v}$. Сумма метрик по каждому риску переводится из относительно значения денежную форме после нахождения удельного значение метрики m_d в тыс.руб. $m_d = z_m/(\Sigma m_i)$. Так определяется нижняя граница (U).
- 4. Для определения *верхней границы* (U) задаются граничные количественные значения лингвистических переменных, проводится имитационное моделирование рисков и определяются погрешности моделирования среднего значения параметра предотвращенного ущерба.

Результаты моделирования параметров СМИБ на этапе ее проектирования

ОГРАНИЧЕНИЯ

- 1.Оценка проводится только по умышленным рискам.
- 2. Допустимо соотношение $k \cdot \sum m_i \Longleftrightarrow u_0$
- 3. $\forall m_i, (u_i \geq m_i)$

$$Cd_2 = \max_{s} \left(\sum_{i=1}^{k} (u_i^s - z_i^s) \right), i = \overline{i, k}, s = \overline{1, n}$$

$$Cd_3 = \max_{s} \left(\sum_{i=1}^{k} (u_i^s - z_i^s) \right), \left(\sum_{i=1}^{k} z_i^s < z_0 \right), i = \overline{1, k}, s = \overline{1, n}.$$

Заключение

- 1. Предложенные модели рисков позволяют расширить круг задач по управлению рисками информационной безопасности даже в отсутствии параметра неизвестной уязвимости. Это достигается за счет определения угроз для критичных активов.
- 2. На основе их анализа предложены механизмы оценки рисков (возможных ущербов) в относительных метриках измерений и методика перехода в абсолютные их значения в экономических показателях.
- 3. Такой подход позволяет проводить сравнительную оценку эффективности различных вариантов построения системы защиты информации, расширяя возможности требований нормативных документов регуляторов.

Вопросы!

Минзов Анатолий Степанович, доктор технических наук, профессор кафедры БИТ НИУ «МЭИ» (<u>MinzovAS@mpei.ru</u>)

Невский Александр Юрьевич, кандидат технических наук, заведующий кафедрой БИТ НИУ МЭИ

Баронов Олег Рюрикович, кандидат технических наук, доцент кафедры безопасности БИТ НИУ МЭИ