

ХХVI НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ

Квантово-безопасное федеративное глубокое обучение

Обзор на основе работы:

Авторы: Kfir Sulimany и др. Лаборатория: MIT Research Laboratory of Electronics

Quantum-secure multiparty deep learning

Kfir Sulimany^{*1}, Sri Krishna Vadlamani¹, Ryan Hamerly^{1,2}, Prahlad Iyengar¹, and Dirk Englund¹ ¹Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA ²Physics & Informatics Laboratories, NTT Research, Inc., Sunnyvale, CA, USA

Автор обзора: Воробей Сергей С. Заместитель начальника отдела лицензирования и сертификации ООО «КуРэйт»

Слайд из презентации Сорокина Павла Юрьевича, Первый заместитель Министра энергетики Российской Федерации

	<u>УБИ. 218</u>	Угроза раскрытия информации о модели машинного обучения	конф.
	<u>УБИ. 219</u>	Угроза хищения обучающих данных	конф.
	<u>УБИ. 220</u>	Угроза нарушения функционирования («обхода») средств,	конф.
		реализующих технологии искусственного интеллекта	
	<u>УБИ. 221</u>	Угроза модификации модели машинного обучения путем	цел.
		искажения («отравления») обучающих данных	
	<u>УБИ. 222</u>	Угроза подмены модели машинного обучения	конф.
			цел.

2. Конфиденциальность федеративного глубокого машинного обучения

 $\overrightarrow{x_2}$

Вычиление $f(ec{x},ec{w})=\overrightarrow{\Delta w}$, не раскрывая аргументов:

- \vec{x} приватные данные клиента,
- \vec{w} веса модели сервера,

Ева

 Δw – прожуточные градиенты

 $\overrightarrow{x_1}$

 $\vec{\chi_4}$

3. Недостатки гомоморфного шифрования (homomorphic encryption - HE)

$$Enc(f(x)) = f(Enc(x))$$

0(**n**^k) – сложность, где

n – размер входных данных:

- $\vec{x} \in \mathbb{R}^N$ локальный вектор данных клиента
- *w* = *vec*(*W*), *W* ∈ ℝ^{N×M} вектор когерентных состояний весов. MNIST: *N* = 784 (28×28 пикселей),
 - *М* число нейронов в слое
- *k* сложность (*P*(2 ≤ *k* ≤ 3) ≈ 1)

Недостатки гомоморфного шифрования:

- Вычислительная сложность
- Уязвимо к кв.вычислениям

4. Архитектура решения

$$\vec{w}_{cepBep} \rightarrow \underbrace{U_{\vec{x}} \rightarrow \mathcal{M}(U_{\vec{x}}\vec{w}) \rightarrow U_{\vec{x}}^{\dagger} \rightarrow \rho_{v}}_{KЛИЕНТ}$$
1. $W_{i} \rightarrow \overline{W_{i}} = \{|\alpha_{0}\rangle, ...\}$ – Когерентные состояния весов

$$\underbrace{(epBep)}_{cepBep} 2. U_{\vec{x}}^{\dagger} \mathcal{M}(U_{\vec{x}}\vec{w}) \quad KЛИЕНТ}_{VI}$$
3. ρ_{v} – Верификационное состояние
 $\alpha_{j} = \underbrace{\sqrt{\mu}W_{ij}}{\|W\|_{RMS}}, r_{A}P_{\mu} \qquad \vec{x} \rightarrow \hat{x} = \frac{\vec{x}}{\|\vec{x}\|}$

5. Операции на клиенте $\vec{w} \to U_{\vec{x}} \to \mathcal{M}(U_{\vec{x}}\vec{w}) \to U_{\vec{x}}^{\dagger} \to \rho_{v}$

1 Измерение

$$U_{\vec{x}}\vec{w} = (\vec{w}\cdot\hat{x}, v_2, \dots, v_N) = (\boldsymbol{\alpha}, v_2, \dots, v_N)$$

Клиент измеряет обе квадратуры (\hat{X} , \hat{P}) когерентного состояния $|\alpha\rangle$ с помощью гомодинного детектирования. $|\alpha\rangle$ имеет дисперсию в 1 SNU (Shot Noise Unit) $\langle (\Delta \hat{X})^2 \rangle = \langle (\Delta \hat{P})^2 \rangle = 1 SNU$

2 Прямое распространение

 $\mathcal{M}(U_{\vec{x}}\vec{w}) = (\tilde{\alpha}, v_2, \dots, v_N)$

Операция ${\mathcal M}$ обобщается через ${\mathcal G}$, которая включает:

- Усиление с коэффициентом G (phase-insensitive amplification);
- Разделение луча с соотношением $1 \frac{1}{G} : \frac{1}{G}$;

Где \widetilde{lpha} – новое состояние в результирующей моде

6. Операции на клиенте $\vec{w} \to U_{\vec{x}} \to \mathcal{M}(U_{\vec{x}}\vec{w}) \to U_{\vec{x}}^{\dagger} \to \rho_{v}$

Прямое распространение

После измерения $U_{\vec{x}}^{\dagger}$ добавленный шум распределяется по всем модам верификационного состояния ho_v , для *i*-й моды шум:

$$\eta_i = (2 - \frac{2}{G}) |\hat{x}_i|^2$$
$$\rho_v = U_{\vec{x}}^{\dagger} \mathcal{M}(U_{\vec{x}} \vec{w})$$

Среднее значение ρ_v совпадает с \vec{w} : $\langle \tilde{\alpha} \rangle = \vec{w} \cdot \hat{x}$, но дисперсия каждой моды увеличивается на η_i : $\sigma^2 = 1 + \left(2 - \frac{2}{G}\right) |\hat{x}_i|^2 = 1 + \eta$, где η – избыточный шум, что маскирует информацию о \vec{x} .

→ Re

7. Утечка *w*_{*i*}, оценка границы Холево

Операция ${\mathcal M}$ добавляя квантовый шум:

• Защищает \vec{w} сервера, так как клиент измеряет только проекцию $\vec{w}\cdot\hat{x}$, а остальной шум маскирует исходные веса.

$$I_{w_i} \le \chi = S(\rho_{AB}) - S(\rho_{B|A}) \to I_{w_i} \le g(v_1) + g(v_2) - g(v_3)$$

$$g(v) = \left(\frac{v+1}{2}\right)\log_2\left(\frac{v+1}{2}\right) - \left(\frac{v-1}{2}\right)\log_2\left(\frac{v-1}{2}\right)$$

$$a = 2\mu + 1, b = 2\mu + 1 + \eta_i, c = \sqrt{4\mu^2 + 2\mu + 1}, z = \sqrt{(a+b)^2 - 4c^2}$$
$$v_{1,2} = \frac{1}{2}(z \pm [b-a]), v_3 = a - \frac{c^2}{b+1}$$

8. Утечка x_i , оценка границы Крамера-Рао

Операция ${\mathcal M}$ добавляя квантовый шум:

 Защищает x клиента, т.к. обратно высылается верификационное состояние РусКрипто и только в дисперсии содержится информация о данных. Сервер видит только шум η_i, зависящий от |x_i|²:

Квантовая граница Крамера-Рао (QCRB) — оценка границы дисперсии случайной квантовой величины.

$$Var(\hat{x}_i) \ge rac{1}{M\mathcal{F}_R[
ho_x]}$$
, где M – число измерений, $\mathcal{F}_R[
ho_x] = rac{4|\hat{x}_i|^2(2-rac{2}{G})^-}{\sigma_i^4}$
 $I_{x_i} = rac{1}{2}\log_2\left(1 + rac{|\hat{x}_i|^2}{Var(\hat{x}_i)}
ight)$
 $I_{x_i} \le rac{1}{2}\log_2\left(1 + k \cdot rac{8M(G-1)^2|\hat{x}_i|^4}{G^2\sigma_i^4}
ight), \qquad k = 2$ (следствие из границы Крамера-Рао)

 ~ 2

9. Компромисс точности и безопасности

Естественный компромисс: уменьшение μ снижает I_{w_i} , но требует роста G, увеличивая I_{x_i} .

 $I_{w_i} < 0.1$ (для $\mu = 4$) $I_{x_i} < 0.01$ (для G = 3)

Современные стандарты квантования, необходимые для обеспечения минимальной точности для DNN, соответствуют 1 биту*.

Даже зная утечку, атакующий не сможет восстановить модель без доступа к обучающим данным.

* – Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A survey of quan-tization methods for efficient neural network inference. InLow-Power Computer Vision, pages 291–326. Chapman and Hall/CRC, 2022.

10. Зависимость утечки от параметров

Потери в каналах. При 6 дБ – типичных для локальных сетей – *I_{wi}* растет до 4 бит, но *I_{xi}* не зависит от потерь. С увеличением числа нейронов утечка падает: шум распределяется по модам. Для больших DNN, с тысячами нейронов, безопасность только возрастает.

СПАСИБО ЗА ВНИМАНИЕ

