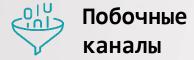
Широкополосная рефлектометрия для анализа уязвимостей систем КРК в ближнем инфракрасном диапазоне

Квантовое распределение ключей



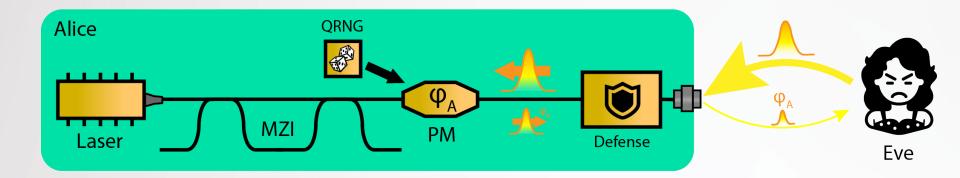
- Безопасность протокола обеспечивается законами квантовой физики
- Атака на квантовые состояния приводит к их возмущению. Наблюдается рост ошибочных срабатываний

Атаки на техническую реализацию

- Trojan Horse
- Backflash
- Радиоизлучение

Навязывание

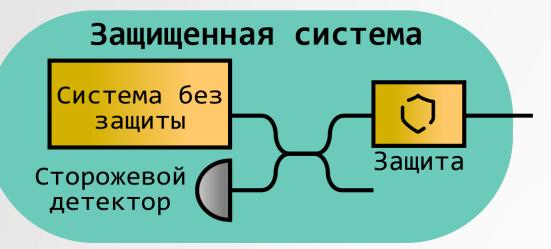
- Detector Blinding
- After-Gate
- Detector Efficiency Mismatch



Изменение свойств системы

- Laser Damage
- Laser Seeding

Атака «Trojan Horse»



- Ева посылает световой импульс высокой мощности внутрь системы КРК
- Импульс претерпевает потери и отражается
- \circ Ева проводит измерения над сигналом в отраженном импульсе со средним числом фотонов μ_{Eve}

Защита от «Trojan Horse»

Алиса

- о Защита понижает мощность зондирующего излучения
- Демонстрируется нестабильная эффективность в широком спектре

Элементы защиты

Утечка информации при атаке в широком спектре

о Мощность отраженного сигнала P_{Eve} можно **измерить** и оценить μ_{Eve} :

 P_{max} – 40 dBm-порог повреждения системы внешним излучением (или чувствительность сторожевого детектора)

• *T* – спектр пропускания пассивных компонентов защиты

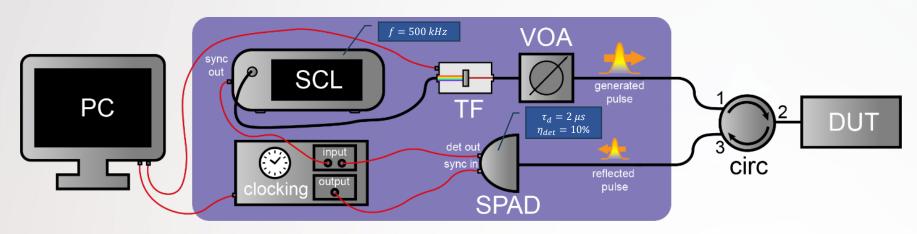
• *R* – величина максимального пика отражения внутри системы

$$P_{\text{Eve}}[dBm] = P_{\text{max}}[dBm] + T[dB] + R[dB]$$

$$\mu_{\text{Eve}}(\lambda) = \frac{P_{\text{Eve}}(\lambda)[W] \cdot \lambda}{f_{\text{Eve}} \cdot h \cdot c}$$

 \circ Величину утечки информации можно вычислить, зная μ_{Eve}

Информация Евы (QBER = 0)

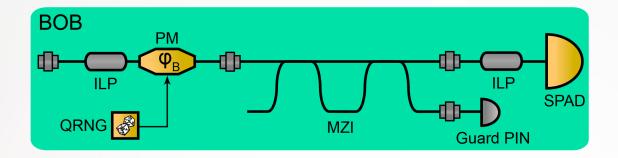

$$\eta = \eta(\mu_{Eve}) \approx 1 - 2\mu_{Eve}$$

$$\bar{\chi}_{Eve} = h\left(\frac{1-\eta}{2}\right) \approx h(\mu_{Eve})$$

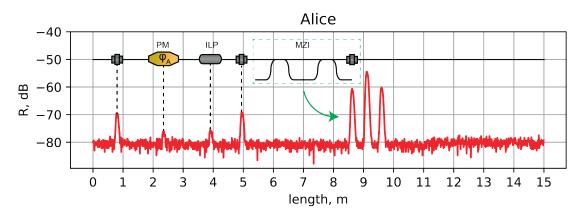
Широкополосный рефлектометр (ν - OTDR)

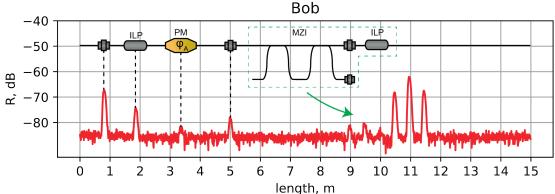
- \circ Для определения максимального пика отражения в широком спектральном диапазоне ($\lambda=1100-1800\,\mathrm{HM}$) проводится широкополосная **рефлектометрия** системы КРК
- Рефлектометр вводит в систему лазерный импульс на каждой длине волны, засекает время возврата его отраженных частей и измеряет их мощность. Динамический диапазон измерений $\approx 80~\mathrm{dB}$ (рэлеевское рассеяние), пространственное разрешение до 10 см в широком спектре.



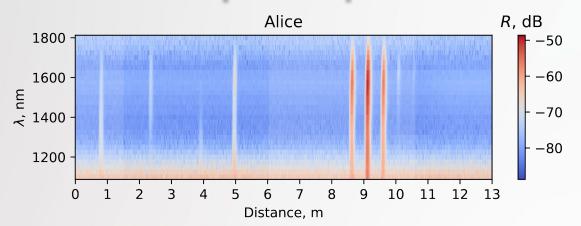

SCL - суперконтинуумный пикосекундный лазер, TF - перестраиваемый фильтр, VOA - перестраиваемый аттенюатор, SPAD - лавинный фотодиод на базе InGaAs, CIRC - волоконный циркулятор

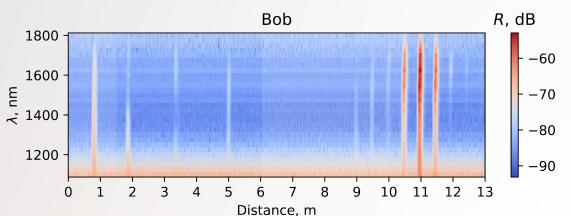
Исследуемая система


- Оптические установки намеренно исследуются без пассивных компонентов защиты для максимизации динамического диапазона
- В системе реализован фазово-временной протокол КРК

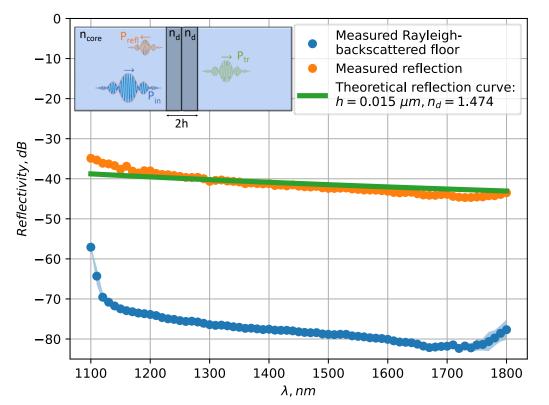


Анализ рефлектограммы на длине волны $\lambda = 1325~\mathrm{nm}$




- На длине волны 1325 нм прослеживаются все пики отражений
- Проведено соответствие между пиками на рефлектограмме и волоконными компонентами СКРК
- Максимальные по величине отражения происходят на коннекторах после MZI

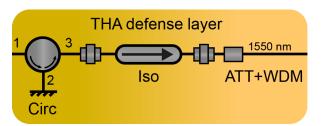
Тепловые карты отражений


• Максимальное отражение в оптической установке Алисы $R_{\rm max}^{\rm A} \approx -49~{\rm dB}$ принадлежит коннектору в схеме MZI ($\lambda_{\rm A} = 1575~{\rm hm}$)

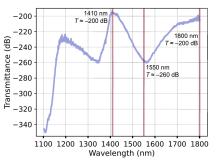
Максимальное отражение в оптической установке Боба $R_{\rm max}^{\rm B} \approx -53~{
m dB}$ также принадлежит коннектору в схеме MZI ($\lambda_{
m R}=1625~{
m hm}$)

Величина отражений волоконного коннектора FC/PC

- Измерения проведены в стробируемом режиме работы SPAD
- Динамический диапазон определяется рэлеевским рассеянием
- Теоретическая зависимость описывается моделью резонатора Фабри – Перо [М. Kihara 1996]:


$$R_0 = \left(\frac{n_{\rm d} - n_{\rm core}}{n_{\rm d} + n_{\rm core}}\right)^2$$

$$R \approx 10 \cdot \log_{10} \left(R_0 \cdot \left(\frac{4\pi \cdot n_{\rm d} \cdot 2h}{\lambda} \right)^2 \right)$$


Анализ защищенности системы от атаки Trojan-Horse ($\lambda = 1100 - 1800 \text{ nm}$)

Circ – циркулятор, Iso – изолятор, ATT+WDM – сваренные аттенюатор и WDM-фильтр

Пропускание системы из пассивных компонентов защиты

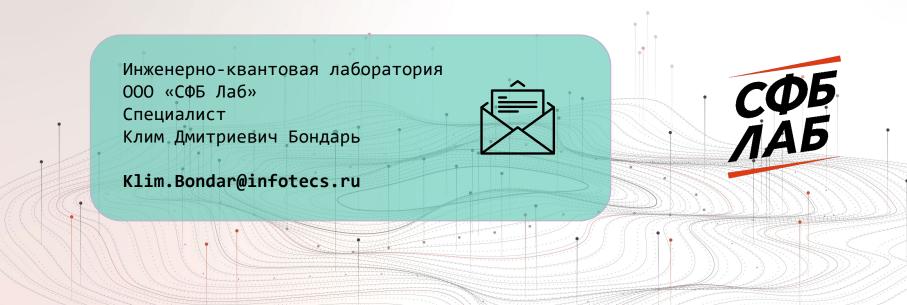
[Sushchev 2024] $T_{\rm def}^{\rm A}(\lambda_{\rm A}) \approx -250 \, {\rm dB}$

Рефлектометрия: $R_{\text{max}}^{A} \approx -49 \text{ dB}$

Информация Евы при полном внутреннем отражении (R = 0 dB):

$$\mu_{
m refl}^A pprox 2 \cdot 10^{-11}$$
 , $ar{\chi}_{
m Eve}^A pprox 10^{-9}$

Информация Евы при фактическом отражении (рефлектометрия):


$$\mu_{\rm refl}^{A} \approx 2 \cdot 10^{-16}$$
, $\bar{\chi}_{\rm Eve}^{\rm A} \approx 10^{-14}$

Выводы

- о Представленный широкополосный рефлектометр с сантиметровым пространственным разрешением и динамическим диапазоном до -80 dB позволил напрямую исследовать возможность и эффективность атаки Trojan Horse в спектральном диапазоне $\lambda = 1100-1800\,\mathrm{HM}$
- Показано, что наибольшие по величине отражения около -50 dB в исследуемой системе КРК принадлежат оптическим коннекторам
- Информацию Евы можно свести к 0 со сколь угодно заданной точностью, рассчитав требуемый уровень изоляции системы по утечке в ходе атаки на оптимальной длине волны. Это позволяет сэкономить до 50 dB оптической изоляции и упростить компонентную базу защиты от атаки
- Полноценный анализ уязвимости систем КРК к атаке Trojan Horse подразумевает снятие **рефлектограмм** и **спектров пропускания** защитных компонентов в широком спектральном диапазоне

Спасибо за внимание!

