

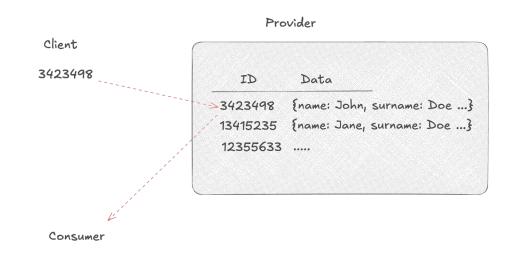






#### Предпосылки



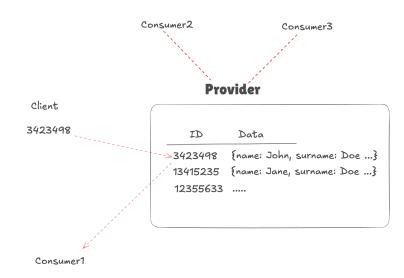

- Для доступа к некоторым сервисам и товарам нужна авторизация, то есть проверка свойств пользователя:
  - Пользователь человек?
  - Возраст ≥X
  - Гражданство ∈ [...]
  - •
- Авторизацию часто осуществляет сторонний провайдер
- Идентификация или аутентификация не всегда возможны или целесообразны







- Телеком: защита от спама
- Финансы: доступ к инвестиционным продуктам
- Розница и е-commerce: продажа алкоголя, энергетиков и других товаров

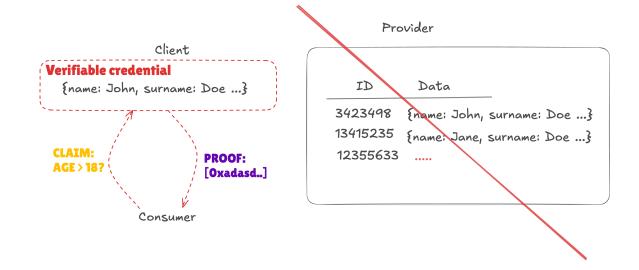





## Проблема



- Провайдер не оставляет верифицируемых следов
- Именно Провайдер хранит данные
- Интеграция возможна только через соглашение с провайдером






#### Решение



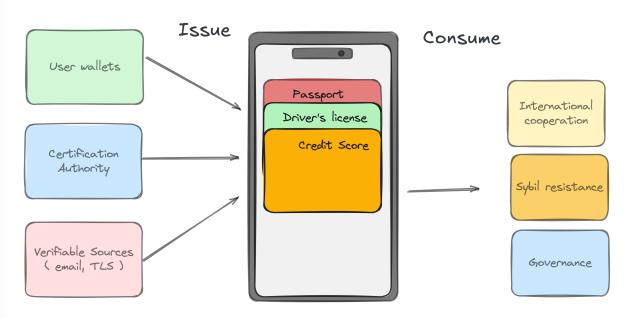
- Создавать и хранить данные в верифицируемом виде
- Предоставлять только доказательство





### Верифицируемые данные



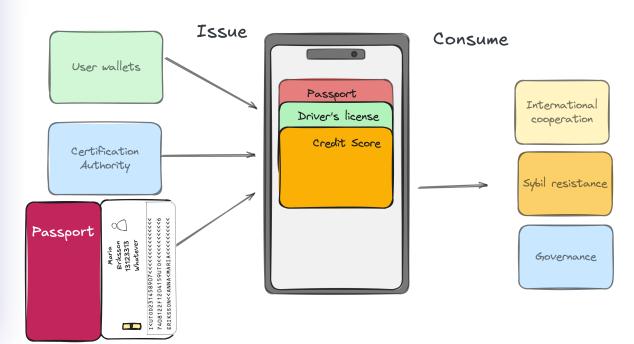

- Часть подписанного сообщения (ECDSA, ГОСТ, RSA, BBS+[1]) известным сертификатом, например (информация на чипе паспорта)
- Содержание email от известного отправителя
- Результат сетевого запроса ( "нотариально заверенный скриншот")
- Вхождение реквизитов пользователя в известное множество



## Пользовательский путь



- Получаем удостоверение
- Сохраняем в устройство ( например, мобильное приложение)
- Пользуемся для получения доступа к сервису






## Паспорт



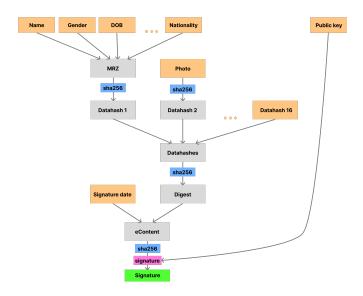
- Содержит данные и фото пользователя с ЭЦП ФМС
- Задача: доказать возраст и гражданство без раскрытия остальных данных





### Постановка и условия

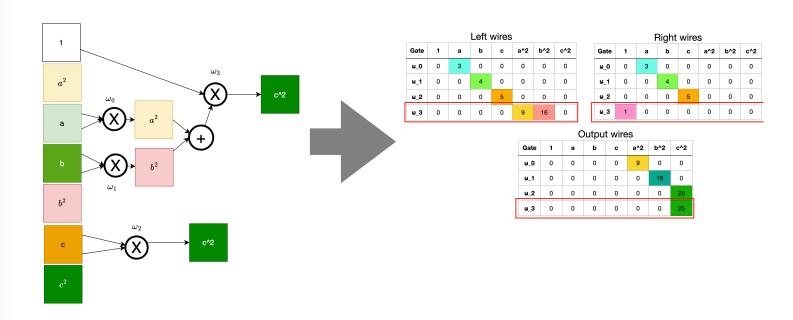



- Проверить часть данных в прообразе дайджеста.
- Проверить подпись
- Не допустить возможность использования посторонними
- (Опционально) Не допустить связи между различными сессиями пользователя, то есть скрыть дайджест



## Проверяем дайджест. Groth16[1]

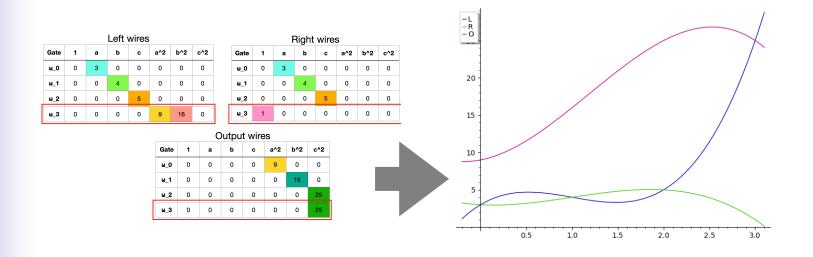



- Преобразуем программу в алгебраический контур
- Преобразуем контур в уравнение для полиномов
- Проверяем уравнение в случайной зашифрованной точке





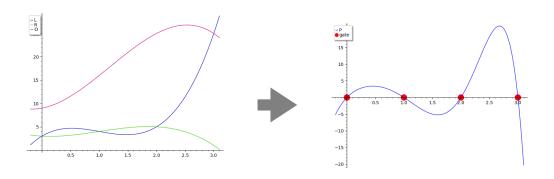
## Програма →Линейные уравнения








## Линейные уравнения → полиномы








## Линейные уравнения →полиномы





$$P(x) = L(x) * R(x) - O(x)$$

$$\exists H(x) : P(x) = H(x) * \prod_{i} (x - \omega_{i})$$

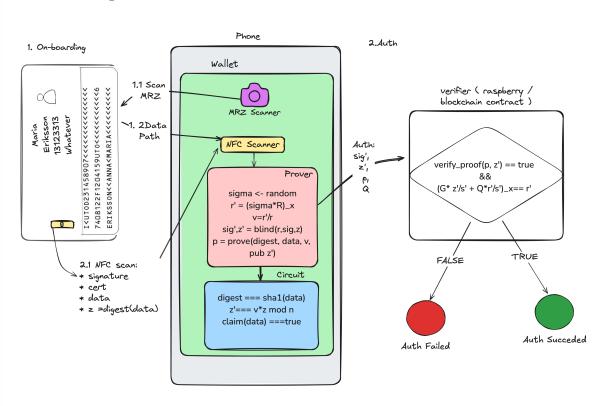
$$\forall \tau \quad H(\tau) \cdot t(\tau) = P(\tau)$$

$$\forall \tau \quad : e(H(\tau) \cdot t(\tau)) = e(L(\tau) \cdot R(\tau))$$



## Бонус: ослепление дайджеста




$$\sigma \overset{\$}{\leftarrow} \mathbb{F}_p$$
 - Ослепляющий фактор  $S=(r,s) \Longrightarrow \quad r'=(\sigma \cdot r)_x, s=r' \cdot r^{-1} \cdot \sigma^{-1} \cdot s \to S'=(r',s')$   $z'=r' \cdot r^{-1} \cdot z$  - Ослепленный дайджест

$$\begin{aligned} &((s^{'-1} \cdot z') \cdot G + (s^{'-1} \cdot r') \cdot Q)_x = r' &? \\ &((s^{-1} \cdot r' \cdot r^{-1} \cdot z) \cdot \sigma \cdot r^{'-1} \cdot r \cdot G + (s^{-1} \cdot r) \cdot \sigma \cdot Q)_x = r \cdot \sigma &? \\ &((s^{-1} \cdot z) \cdot G + (s^{-1} \cdot r) \cdot Q)_x = r &- \text{стандартная проверка подписи} \end{aligned}$$



## Схема прототипа







## Схема прототипа









## Видео





### Защита от передачи



- При создании документа сверяем фото с паспортом
- Данное решение требует доверия приложению
- Альтернативный вариант:
  - Доказательство для расстояния между (embedding) векторами
  - Включение вектора фото в само удостоверение
  - Liveness check



### Стандарты



- ISO/IEC 18013-5 определяет формат mDoc ( мобильный документ)
- JSON-LD семантика JSON
- W3C DID маршрутизация и возможные методы верификации
- W3C Data Integrity возможные криптографические алгоритмы

- https://www.w3.org/TR/json-ld11/
- https://www.w3.org/TR/vc-data-model/
- https://www.w3.org/TR/vc-data-integrity/



#### ISO/IEC 18013-5



- Поддерживается только ECDSA
- Не имеет (пока) готовых стандартов для частичного раскрытия данных, но позволяет расширения
- Для частичного раскрытия нужно подписывать каждый атрибут отдельно



#### W3C VC



Я знаю такую подпись СА для корня дерева, что листы содержат такие-то данные

```
"id": "urn:uuid:123e4567-e89b-12d3-a456-426614174000",
"type": ["VerifiablePresentation"],
"verifiableCredential": {
 "credentialSubject": {
  "dateOfBirth": "1995-06-12"
 "merkleProof": {
  "leaf": "0xhash_of_1995-06-12", // Лист дерева
  "proofPath": ["0xhash1", "0xhash2", "0xhash3"], // Путь к корню
  "root": "0xabcd1234ef567890...", // Корень должен соответствовать подписи
 "proof": {
  "type": "MerkleProofSignature",
  "created": "2025-03-13T00:00:00Z",
  "proofValue": "0xdeadbeefcafebabe...",
  "proofPurpose": "assertionMethod",
  "verificationMethod": "did:example:california-dmv#keys-1"
```



#### JSON-LD & BBS+



Я знаю такую подпись СА, что прообраз дайджеста удовлетворяет условиям

```
"@context": "https://www.w3.org/2018/credentials/v1",
"type": "VerifiableCredential",
"credentialSubject": {
 "ageOver21": true
"proof": {
 "type": "BBS+SignatureProof",
 "created": "2025-03-13T12:34:56Z",
 "proofPurpose": "assertionMethod",
 "verificationMethod": "https://dmv.example.gov/keys/123",
 "proofValue": "z4FZzKw..."
```



## Стандарты



EIDAS 2.0 (цифровой паспорт EC) поддерживает только ISO/IEC 18013-5 по причине отсутствия явной подписи владельца

| Стандарт                 | Метод       | Приватность   | ISO/IEC 18013-5         |
|--------------------------|-------------|---------------|-------------------------|
| ISO/IEC 18013-5          | JWS (ECDSA) | Низкая        | $\overline{\checkmark}$ |
| W3C VC                   | Д. Меркла   | Средняя       | ×                       |
| W3C VC                   | BBS+        | Высокая       | ×                       |
| Hyperledger<br>AnonCreds | CL подписи  | Высокая       | ×                       |
| Iden3 / Polygon ID       | Zk-SNARK    | Очень высокая | ×                       |



## Что дальше



- Прототип на основе BBS+ подписей в SIM-картах
- Поиск синергии с продуктами на основе ЦФА
- Верифицируемые запросы к внешним системам



## СПАСИБО!



## Контакты



# Обратная связь

