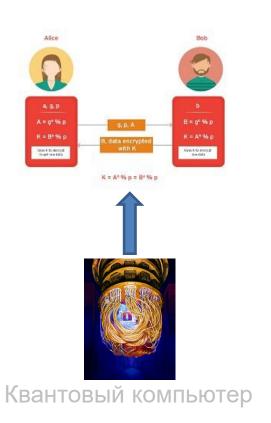


РусКрипто

НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ

Андрей Кузнецов АО «НИИМЭ»


Так ли всё плохо с классической криптографией?

- Протокол Диффи-Хеллмана уязвим известен алгоритм атаки с применением квантового компьютера и алгоритма Шора
- Схема Диффи-Хеллмана и подобные ей сейчас применяется при распределении ключей

Вывод: нужны другие схемы

распределения ключей

Какие есть решения?

• **Квантовое распределение ключей** (КРК) использует физический принцип для распределения ключей, нет никакого обратного преобразования

 Пост-квантовые криптографические алгоритмы, в частности, пост-квантовое расширение Диффи-Хеллмана РQXDH

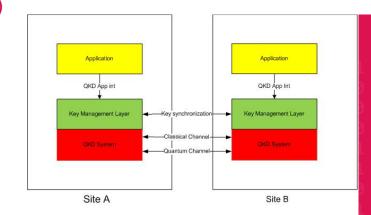
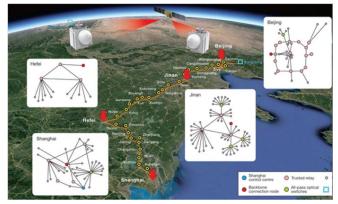


Схема интерфейса КРК-внешнее приложение из ETSI GS QKD 004


Системы квантового распределения ключей

 Технология для получения одинаковых симметричных ключей на двух узлах

 Может быть расширена для получения согласованных ключей на N > 2 узлах сети (см., например, российские протоколы ISTOQ и ProtoQa)

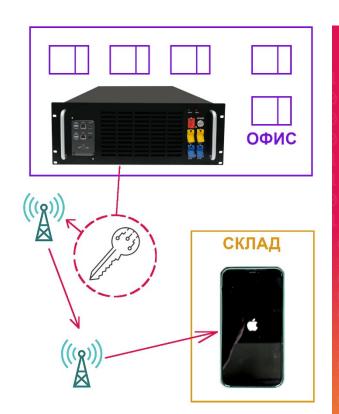
 Требует соединения конечных узлов КРК оптоволокном

Квантовая сеть в Китае. Суммарная длина ~4600 км. Иллюстрация из статьи Chen, YA., Zhang, Q., Chen, TY. et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. *Nature* **589**, 214–219 (2021).

Проблема «последней мили»

РусКрипто

 Пользовательское устройство может не быть напрямую связано с узлом КРК



Проблема «последней мили»

- Пользовательское устройство может не быть напрямую связано с узлом КРК
- Пользовательское устройство может находиться вне доверенного контура
- Пользовательское устройство может иметь другой класс защиты

Вопрос: как ключ попадает из узла сети КРК в целевое СКЗИ (телефон, ПК и т.п.) вне доверенного контура и без использования привычных схем распределения ключей?

Где хранить квантово-защищенный ключ?

РусКрипто

Специализированная карта-токен:

- Получает актуальные мастер-ключи с терминала, подключенного к КРК, внутри доверенного контура
- Вычисляет сессионные ключи оффлайн
- Обеспечивает <u>аутентификацию</u> пользователя (PIN-код)
- Поддерживает защищённый обмен сообщениями (ЗОС) при общении с целевым СКЗИ вне доверенного контура

Сценарий: «квантовый мессенджер»

РусКрипто

- В организации есть несколько филиалов, соединённых сетью КРК
- Работники получают мастер-ключи на свои карты-токены на проходной
- В мессенджере <u>3 режима</u>:
- 1) чат
- 2) групповой чат
- 3) электронная почта
- Конкретная реализация мессенджера не обсуждается в данном докладе

Выработка сессионных ключей

 Алгоритм должен вырабатывать уникальные сессионные ключи

 Параметры сессии не являются секретом и согласовываются по открытому каналу

 Сессионные ключи доступны только непосредственным участникам чата или переписки

SKM = KDF_{TREE}[64](K_{in}, LABEL_{SKM}, SEED) K_{ccs} = KDF(K_{in}, LABEL_{ccs}, SEED) SEED = TimeStamp | ID₁ | ID₂ | ... | ID_N

Особенности протокола

РусКрипто

- Для успешной <u>установки ЗОС</u> с токеном терминал должен <u>запросить PIN-код.</u>
- Выработка ключей контролируется токеном – только сессии, в которых участвует владелец токена.
- Токен контролирует возрастание временной метки

SKM_{KeylD,Alice,Bob,t}

INSTANCE SKM (Key_{ID} + ID_{Bob} + t)

(KeyID, t, CCS)

Особенности протокола

РусКрипто

- Для успешной установки ЗОС с токеном терминал должен запросить PIN-код.
- Выработка ключей контролируется
 токеном только сессии, в которых
 участвует владелец токена.
- Токен контролирует возрастание временной метки и выход за пределы разрешённого временного окна.
- Токен проверяет подпись входящих запросов на переписку.

Принципиальная схема установки сессии

CKM = KDFTREE(Kmaster, LABELSKM, IDA | IDB | t0)

\overline{a}
**

РусКрипто

	LØ
	a «
	0 • 3
	0
	\perp
	0
ка	
ııa	0
	•
	14
	0
	0

Alice (инициатор сессии)	Bob
Подготовка данных сессии, ввод PIN- кода для работы с токеном.	
Получение СКМ и подписи от токена для группы (+Bob) и временной метки t0.	
Формирование пакета авторизации и отправка абоненту Bob.	Извлечение открытых параметров сессии, ввод PIN-кода от токена.
	Выработка СКМ на токене для группы (+Alice) и t0 с проверкой подписи .
Проверка криптограммы с использованием СКМ .	Проверка пакета авторизации. Отправка ответной криптограммы.
Сессия считается установленной, на обеих сторонах вычислен одинаковый	

Что может предложить АО «НИИМЭ»?

Прототип токена для «квантового мессенджера» разработан в **НИИМЭ** на базе смарт-карты с ОС Just 2.00, произведенной на заводе **Микрон**.

- JavaCard API расширен за счет поддержки российских криптографических алгоритмов.
- Имеется аппаратное ускорение российских криптографических алгоритмов (для хэширования по ГОСТ Р34.11-2012 ускорение на 2 порядка по сравнению с программной реализацией)

СПАСИБО ЗА ВНИМАНИЕ