

Ежегодная международная научно-практическая конференция «РусКрипто'2022»

Высокопроизводительная псевдослучайная функция pCollapserARX256-32x2

Поликарпов Сергей Витальевич

к.т.н., доцент каф. ИБТКС, ИКТИБ ЮФУ

Румянцев Константин Евгеньевич

д.т.н., заведующий каф. ИБТКС, ИКТИБ ЮФУ

Прудников Вадим Александрович

аспирант, ассистент каф. ИБТКС, ИКТИБ ЮФУ

Институт компьютерных технологий и информационной безопасности, Южный федеральный университет

слайд 1 из 44 www.ruscrypto.ru

Цель работы:

создание высокопроизводительной псевдо-случайной функции на основе псевдо-динамических подстановок с использованием ARX-операций.

Задачи исследования:

- 1. Определить возможность применения ARX-функций в качестве основного элемента псевдо-динамической подстановки. Для этого требуется подобрать ARX-функцию, оценить её криптографические свойства и свойства получаемых псевдо-динамических подстановок.
- 2. Интегрировать псевдо-динамические подстановки на основе ARXфункций в структуру псевдо-случайной функции pCollapser (pCollapserARX).
- 3. Создать последовательную и параллельную программные реализации pCollapserARX и оценить их производительность.

Актуальность:

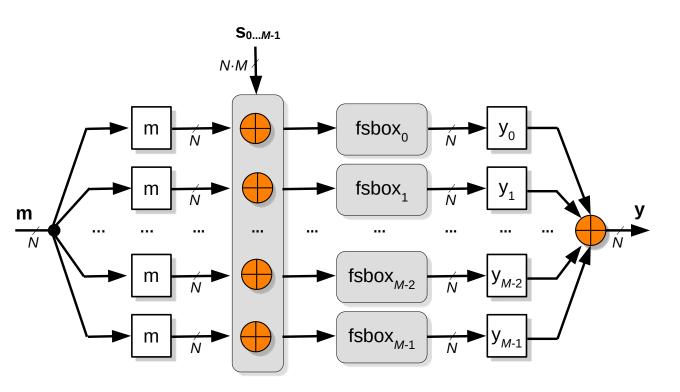
Существующий набор отечественных симметричных криптоалгоритмов (Кузнечик, Магма, Стрибог) позволяет обеспечить качественную защиту информации при межсетевом взаимодействии в рамках протоколов EPS IPSec и TLS. Однако существенной проблемой при массовом внедрении криптоалгоритмов недостаточная отечественных может стать производительность их программных реализаций [1,2].

Одним из направлений современной криптографии является создание и исследование криптоалгоритмов на основе ARX-операций (Addition, Rotate, Xor). ARX-конструкции наиболее полно используют возможности современных процессоров и обеспечивают высокую скорость преобразования информации (как, например, алгоритм ChaCha20 [3]).

Основным недостатком таких алгоритмов является относительно слабые нелинейные свойства операции арифметического сложения, что потенциально может привести к нахождению эффективных методов криптоанализа таких алгоритмов.

Предпосылки:

псевдо-динамические подстановки — позволяют эффективно разрушать статистические зависимости между входными и выходными значениями за счёт динамической трансформации её криптографических свойств, а также позволяют обеспечить параллельную работу входящих в её состав фиксированных подстановок.


псевдо-случайная функция pCollapser — позволяет эффективно реализовать возможности псевдо-динамических подстановок *PDSbox*, в том числе, обеспечить динамическую работу *PDSbox* путём формирования и распределения управляющих значений, а также обеспечить экстремальный параллелизм обработки информации за счёт независимой работы группы *PDSbox* в рамках одного раунда.

операции ARX (Addition, Rotate, Xor) — позволяют наиболее полно использовать возможности современных процессоров и обеспечивают высокую скорость преобразования информации.

Псевдо-динамические подстановки PDSbox

Структура псевдо-динамической таблицы подстановки основана на базе обычных фиксированных подстановок (*fixed sbox* или *fsbox*). Входное значение каждой фиксированной подстановки параметризуется своим индивидуальным значением состояния s_i (*control state*), где i – номер фиксированной подстановки (от 0 до M-1).

Параметры:

№ – размерность входа/выхода;

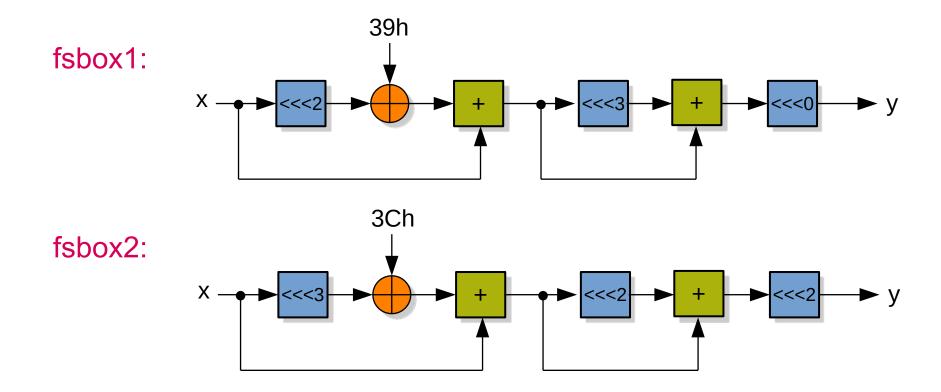
M — количество подстановок;

m – входное значение;

у – выходное значение;

 $s_{0...M-1}$ — значения состояния;

<mark>fsboх</mark>_{0...*м*-1} − подстановки.


$$y = \bigoplus_{i=0}^{M-1} fsbox_i (m \oplus s_i)$$
 (1)

Возможности псевдо-динамических подстановок на примере PDSbox_2x6x6

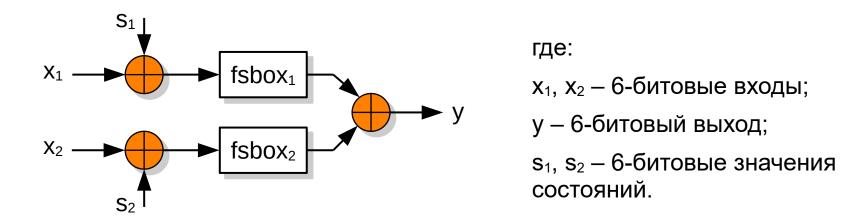
Для примера выберем в качестве двух фиксированных 6-битовых подстановок *fsbox1* и *fsbox2* две ARX-функции, обладающих заведомо плохими линейными и дифференциальными свойствами:

6-битовые подстановки fsbox1 и fsbox2:

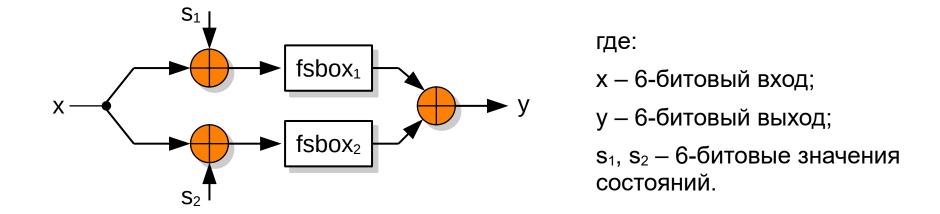
Полученные небиективные подстановки:

fsbox1: [8, 53, 17, 63, 26, 8, 35, 17, 45, 26, 54, 36, 63, 45, 8, 54, 9, 54, 18, 63, 35, 9, 44, 26, 54, 35, 63, 44, 8, 54, 17, 63, 54, 36, 63, 45, 8, 54, 18, 63, 27, 9, 44, 18, 53, 35, 63, 44, 63, 44, 8, 54, 17, 63, 27, 8, 36, 17, 45, 27, 54, 36, 0, 45]

fsbox2: [62, 48, 34, 20, 10, 59, 45, 31, 37, 39, 25, 15, 60, 50, 32, 22, 24, 14, 0, 2, 55, 37, 27, 9, 19, 5, 54, 40, 42, 28, 14, 0, 39, 25, 11, 60, 62, 48, 34, 20, 30, 12, 2, 51, 37, 39, 25, 15, 17, 7, 52, 42, 24, 14, 0, 2, 8, 57, 47, 29, 19, 5, 54, 40]


Криптографические свойства подстановок:

Параметр	fsbox1	fsbox2
Максимальное значение преобладания	Is = 0.437500	Is = -0.328125
Максимальное значение в таблице распределения дифференциалов (диапазон: 064)	$\Delta s = 28$ ($\Delta x = 5$, $\Delta y = 0$)	$\Delta s = 32$ ($\Delta x = 36$, $\Delta y = 0$)
Алгебраическая степень	λs = 4 [4, 5, 6, 5, 6, 6]	λs = 4 [5, 6, 4, 4, 5, 6]
Алгебраический иммунитет	2	2


слайд 7 из 44

Пример типового применения фиксированных подстановок:

Пример псевдо-динамической подстановки PDSbox_2x6x6:

слайд 8 из 44 www.ruscrypto.ru

Дифференциальные свойства представленных конструкций:

Типовое включение подстановок:

Для входной разности $\Delta x = (\Delta x_1 | \Delta x_2), \Delta x_1 = 7, \Delta x_2 = 8$:

1) значения состояний $s_1 = 1$, $s_2 = 1$:

 $\Delta x/\Delta y$: [228, 88, 156, 12, 76, 16, 72, 40, 32, 52, 24, 24, 88, 60, 92, 48, 128 ...]

2) значения состояний $s_1 = 1$, $s_2 = 2$:

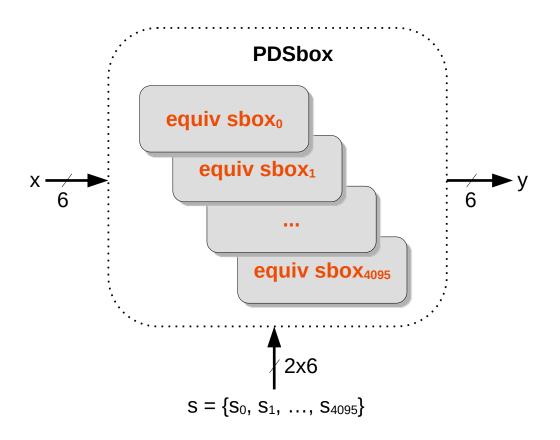
 $\Delta x/\Delta y$: [228, 88, 156, 12, 76, 16, 72, 40, 32, 52, 24, 24, 88, 60, 92, 48, 128 ...]

PDSbox_2x6x6:

Для входной разности $\Delta x = 7$

1) значения состояний $s_1 = 1$, $s_2 = 1$:

 $\Delta x/\Delta y$: [2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0 ...]


2) значения состояний $s_1 = 1$, $s_2 = 2$:

 $\Delta x/\Delta y$: [0, 0, 2, 0, 4, 2, 2, 4, 0, 0, 0, 4, 0, 8, 2, 2, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 2, 0, ...]

Представление псевдо-динамических подстановок в виде набора эквивалентных подстановок:

Усреднение дифференциальных свойств по множеству эквивалентных подстановок:

1. Разности ∆х проходят через одну эквивалентную подстановку (случай, когда значения *s* — фиксированы):

$$\overline{N}_{D}(\Delta X, \Delta Y) = \frac{\sum_{i=0}^{4095} N_{Di}(\Delta X, \Delta Y)}{4096}$$

$$\Delta Y = equivsbox_{i}(x') \oplus equivsbox_{i}(x'')$$
(2)

2. Разности ∆х проходят через разные эквивалентные подстановки (случай, когда значения *s* — динамически изменяются):

$$\frac{\sum_{j=0}^{4095} \sum_{i=0}^{4095} N_{Dji} (\Delta X, \Delta Y_{ji})}{4096^{2}}$$

$$\Delta Y_{ji} = equivsbox_{j}(x') \oplus equivsbox_{j}(x'')$$
(3)

слайд 10 из 44 www.ruscrypto.ru

Усреднённые дифференциальные свойства представленных конструкций:

Типовое включение подстановок:

Для входной разности $\Delta x = (\Delta x_1 | \Delta x_2), \Delta x_1 = 7, \Delta x_2 = 8$:

значения состояний $s_1 = 1$, $s_2 = 0...63$:

 $\Delta x/\Delta y$: [228, 88, 156, 12, 76, 16, 72, 40, 32, 52, 24, 24, 88, 60, 92, 48, 128 ...]

PDSbox_2x6x6:

Для входной разности $\Delta x = 7$

значения состояний $s_1 = 1$, $s_2 = 0...63$:

 $\Delta x/\Delta y$: [0.8125, 0.5625, 1.4375, 0.4375, 1.5, 1.3125, 0.9375, 1.1875, 1.1875, 0.375, 0.875, 1, 1.25, 1.375, 1.5625, 0.875, 0.875, 0.4375, 0.9375, 0.5, 1.3125 ...]

слайд 11 из 44

Выводы по псевдо-динамическим подстановкам:

Если обратиться к дифференциальному криптоанализу, то он основан на определении таблицы переходов разностей (DDT) $\Delta x \to \Delta y$ и дальнейшего поиска в ней и использования таких разностей $\Delta x \to \Delta y$, для которых вероятности появления наиболее отличаются от идеального (равновероятного) значения $P_{\Delta x \to \Delta y} = 1$. При этом, для использования найденной неидеальности обычно требуются значительный объём статистических данных.

Существенный момент — таблица DDT обычно определяется для фиксированной функции (фиксированной подстановки).

В случае динамически изменяемой подстановки такой подход в общем случае не применим, так как для каждого нового входного значения будет псевдослучайно изменяться значения на управляющем входе *pdsbox*, т.е. каждый раз будет равновероятно использована одна из эквивалентных подстановок (из всего множества эквивалентных подстановок 2^м).

слайд 12 из 44

Выводы по псевдо-динамическим подстановкам:

Каждая отдельная эквивалентная подстановка не обладает идеальными дифференциальными/линейными свойствами. Но при попытке набора статистических данных (в условиях равновероятности эквивалентных подстановок) вероятности появления разностей Р_{∆х→∆у} будут усредняться по всему множеству эквивалентных подстановок.

Как показали экспериментальные исследования, если входящие в состав *pdsbox* фиксированные подстановки обладают определённой минимальной нелинейностью/сложностью, то при усреднении значения вероятностей в DDT или LAT для *pdsbox* стремятся к идеальным.

Аналогичная ситуация возникает и для других статистических методов криптоанализа (линейный, на основе усечённых и невозможных дифференциалов, дифференциально-линейный, циклический (rotational), циклически-дифференциальный).

Свойства PRF pCollapser

Рассмотрим свойства PRF pCollapser на примере его миниверсии. Для этого, выберем 4 6-битовые небиективные подстановки *fsbox1...4*, полученные из приведённой выше ARX-функции и обладающие заведомо плохими линейными и дифференциальными свойствами:

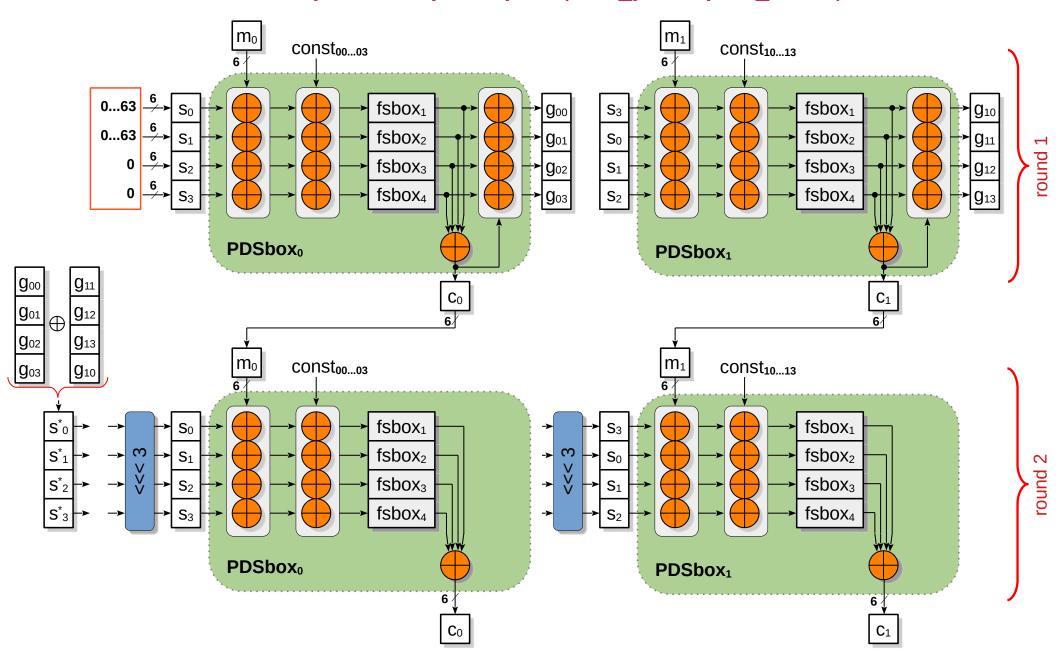
fsbox1: [8, 53, 17, 63, 26, 8, 35, 17, 45, 26, 54, 36, 63, 45, 8, 54, 9, 54, 18, 63, 35, 9, 44, 26, 54, 35, 63, 44, 8, 54, 17, 63, 54, 36, 63, 45, 8, 54, 18, 63, 27, 9, 44, 18, 53, 35, 63, 44, 63, 44, 8, 54, 17, 63, 27, 8, 36, 17, 45, 27, 54, 36, 0, 45]

fsbox2: [62, 48, 34, 20, 10, 59, 45, 31, 37, 39, 25, 15, 60, 50, 32, 22, 24, 14, 0, 2, 55, 37, 27, 9, 19, 5, 54, 40, 42, 28, 14, 0, 39, 25, 11, 60, 62, 48, 34, 20, 30, 12, 2, 51, 37, 39, 25, 15, 17, 7, 52, 42, 24, 14, 0, 2, 8, 57, 47, 29, 19, 5, 54, 40]

fsbox3: [28, 19, 10, 1, 10, 1, 63, 54, 55, 46, 37, 28, 36, 27, 18, 9, 10, 1, 63, 54, 63, 54, 45, 36, 37, 28, 19, 10, 19, 10, 1, 63, 54, 45, 36, 27, 36, 27, 18, 1, 10, 1, 63, 54, 63, 54, 45, 28, 37, 28, 19, 10, 18, 9, 0, 55, 63, 54, 45, 36, 45, 36, 27, 10]

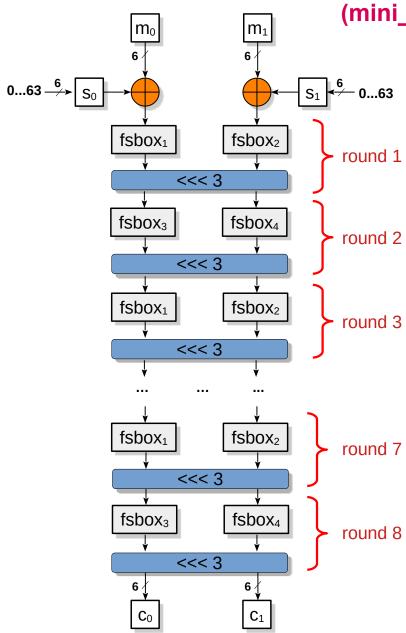
fsbox4: [30, 5, 51, 42, 41, 0, 15, 53, 35, 42, 9, 63, 62, 21, 20, 11, 9, 63, 30, 5, 51, 42, 41, 0, 30, 5, 35, 42, 9, 63, 62, 21, 41, 0, 15, 53, 20, 27, 57, 32, 62, 21, 20, 11, 57, 32, 15, 53, 51, 42, 41, 0, 15, 53, 20, 27, 9, 63, 62, 21, 20, 11, 57, 32]

слайд 14 из 44 www.ruscrypto.ru



Криптографические свойства подстановок fsbox1...4:

Параметр	fsbox1	fsbox2	fsbox3	fsbox4
Максимальное значение преобладания	ls = 0.437500	ls = -0.328125	ls = -0.437500	ls = -0.359375
Максимальное значение в таблице распределения дифференциалов (диапазон: 064)	$\Delta s = 28$ ($\Delta x = 5$, $\Delta y = 0$)	$\Delta s = 32$ ($\Delta x = 36$, $\Delta y = 0$)	$\Delta s = 24$ ($\Delta x = 6$, $\Delta y = 0$)	$\Delta s = 32$ ($\Delta x = 18$, $\Delta y = 0$)
Алгебраическая степень	λs = 4 [4, 5, 6, 5, 6, 6]	λs = 4 [5, 6, 4, 4, 5, 6]	λs = 4 [6, 5, 5, 4, 5, 6]	λs = 3 [3, 4, 6, 5, 4, 3]
Алгебраический иммунитет	2	2	2	2



Миниверсия PRF pCollapser (mini_pCollapser_12x12)

Миниверсия типовой функции на основе SP-сети (mini_conventional_SPN_12x12)

Параметры mini_conventional_SPN_12x12:

- 1. Размерность входа/выхода 12 бит.
- 2. Количество раундов 8.
- 3. Критический путь 8 фикс. подстановок.
- 4. Кол-во подстановок **16**.

Параметры mini_pCollapser_12x12:

- 1. Размерность входа/выхода 12 бит.
- 2. Количество раундов -2.
- 3. Критический путь 2 фикс. подстановок.
- 4. Кол-во подстановок **16**.
- 5. Используемые константы:

$$const_{00...03} = \{13, 23, 37, 43\}$$

$$const_{10...13} = \{7, 17, 31, 47\}$$

Криптографические свойства PDSbox_4x6x6

Параметр	PDSbox_4x6x6 (анализ по 100 экв. подстановкам)
Максимальное значение преобладания	ls = 0.265625
Максимальное значение в таблице распределения дифференциалов (диапазон: 064)	Δs = 12
Алгебраическая степень	λs = 5
Алгебраический иммунитет	2

Криптографические свойства предложенных миниверсий

Параметр	mini_conventional_SPN_12x12	mini_pCollapser_12x12
Максимальное значение преобладания	Is = 0.42627	Is = 0.04834
Максимальное значение в таблице распределения дифференциалов (диапазон: 04096)	Δs = 956	∆s = 16
Алгебраическая степень	λs = 11	λs = 11
Алгебраический иммунитет	2	4

слайд 18 из 44 www.ruscrypto.ru

Криптографические свойства миниверсий

Гистограмма распределения усреднённых значений в таблице DDT, s1 = 063, s2 = 063							
				<mark>mini_pCollapser_12x12</mark> наихудший случай: Δx1 = 50, Δx2 = 18			
[minval	= 0, maxval = 44, step = 4095]	2.2, counted values =	[n	ninval = 0.932129, ma 0.00961914, count	axval = 1.12451, step = ed values = 4095]		
num bin	hist_x	hist_y	num bin	hist_x	hist_y		
0	0.000000	3652	0	0.932129	5		
1	2.200000	123	1	0.941748	25		
2	4.400000	116	2	0.951367	65		
3	6.600000	44	3	0.960986	168		
4	8.800000	47	4	0.970605	293		
5	11.000000	46	5	0.980225	473		
6	13.200000	12	6	0.989844	628		
7	15.400000	20	7	0.999463	678		
8	17.600000	14	8	1.009082	662		
9	19.800000	6	9	1.018701	523		
10	22.000000	4	10	1.028320	297		
11	24.200000	1	11	1.037939	164		
12	26.400000	3	12	1.047559	81		
13	28.600000	1	13	1.057178	22		
14	30.800000	4	14	1.066797	8		
15	33.000000	1	15	1.076416	2		
16	35.200000	0	16	1.086035	0		
17	37.400000	0	17	1.095654	0		
18	39.600000	0	18	1.105273	0		
19	41.800000	0	19	1.114893	0		
20	44.000000	1	20	1.124512	1		

слайд 19 из 44 www.ruscrypto.ru

Выводы по миниверсиям рассмотренных функций:

mini_conventional_SPN_12x12:

Несмотря на существенное количество раундов (Nr = 8) и активного межраундового перемешивания бит за счёт циклического сдвига, результирующая функция обладает крайне плохими дифференциальными свойствами и малым значением алгебраического иммунитета. Вывод – при заданных подстановках данная функция не смогла эффективно разрушить статистические зависимости между входами/выходами.

mini_pCollapser_12x12:

Несмотря на малое количество раундов (Nr = 2) результирующая функция обладает свойствами, аналогичными свойствам 12-битовых случайных подстановок.

Усреднённые дифференциальные свойства приближаются к идеальным, что наглядно показывает динамический характер изменения криптографических свойств PDSbox при изменении управляющих значений на входе (s₁ и s₂) и за счёт формирования управляющих значений для второго раунда.

Вывод – при заданных подстановках данная функция обладает высокой нелинейностью/сложностью преобразования и может эффективно разрушать статистические зависимости между входами/выходами.

слайд 20 из 44 www.ruscrypto.ru

Псевдо-случайная функция pCollapserARX256-32x2

Для раскрытия возможностей псевдо-динамических подстановок на основе ARX-функций и обеспечения динамического режима их работы предложена структура псевдо-случайной функции pCollapserARX256-32x2, использующая в каждом из 4 раундов по 16 параллельно работающих 64 битных ARX-функций. Каждая из 16 ARX-функций параметризована значениями сдвига $t_0...t_7$ и констант.

Структура pCollapserARX256-32x2 является упрощённой версией PRF pCollapser, предложенной в [4] и имеет:

- размер обрабатываемого блока 256 бит;
- размер раундового ключа 256 бит;
- размер управляющего состояния для переключения подстановок 256 бит;
- суммарное значение внутреннего состояния 512 бит.

слайд 21 из 44 www.ruscrypto.ru

Выражение, описывающее структуру ARX-функции:

(для 64-битной ARX-функции применяются 32-битные значения переменных а и b):

$$a_2 = ((a_1 + (a_1 <<< t_0) \land b_1) <<< t_2) \land const_0;$$
 $b_2 = ((b_1 + (b_1 <<< t_1) \land a_1) <<< t_3) \land const_1;$
 $a_3 = (a_2 + ((a_2 <<< t_4) \land b_2) <<< t_6);$
 $b_3 = (b_2 + ((b_2 <<< t_5) \land a_2) <<< t_7);$

где « ^ » – сложение по модулю 2 (операция XOR);

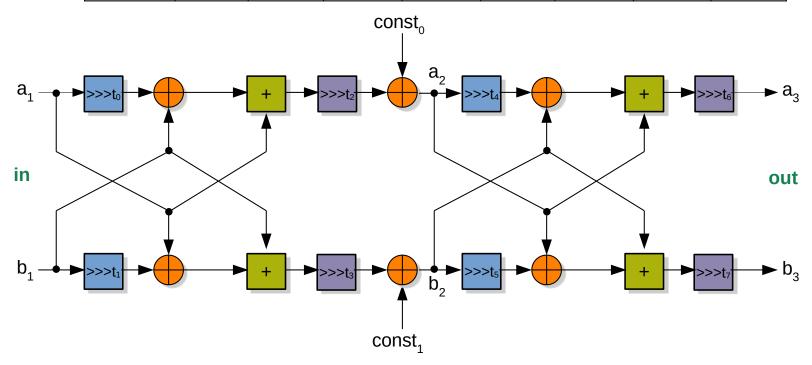
« a <<< t» — циклический сдвиг на t бит влево в двоичном слове a;

 a_1 — младшие 32 бит входного 64-битного значения;

 b_1 — старшие 32 бит входного 64-битного значения;

 a_3 и b_3 — соответственно младшие и старшие 32 бит выходного 64-битного значения;

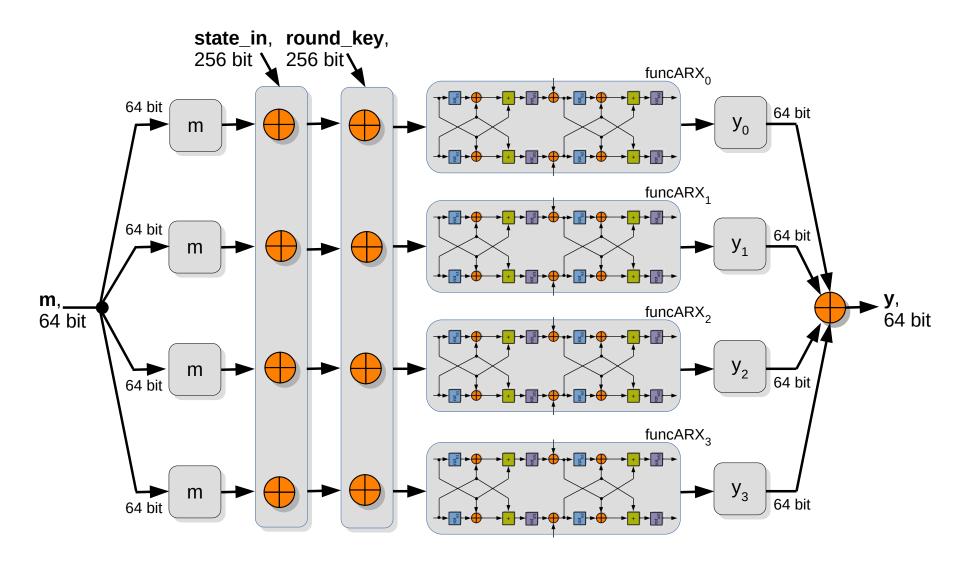
 $t_0 \dots t_7$ – значения циклических сдвигов, задающие конкретную ARX-функцию;


const – 32-битные значения констант, задающие конкретную ARX-функцию.

Структура ARX-функций

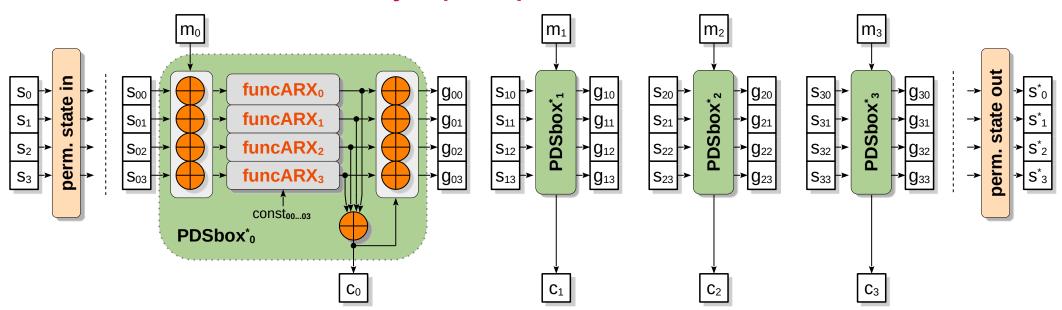
Значения параметров ARX-функций:

	t0	t1	t2	t3	t4	t5	t6	t7
funcARX0:	8	16	16	8	8	16	0	0
funcARX1:	8	16	8	16	16	8	8	8
funcARX2:	16	8	8	16	8	16	16	16
funcARX3:	16	8	16	8	16	8	24	24



Структура ARX-функций подобрана исходя из обеспечения криптографических свойств (в составе PDSbox) и обеспечения оптимального использования возможностей процессоров и аппаратных платформ.

слайд 23 из 44 www.ruscrypto.ru


Псевдо-динамическая подстановка PDSbox_4x64x64

слайд 24 из 44 www.ruscrypto.ru

Payнд pCollapserARX256-32x2

где:

 $m_0 \dots m_3$ – входные значения (размерность всех слов – 64 бит);

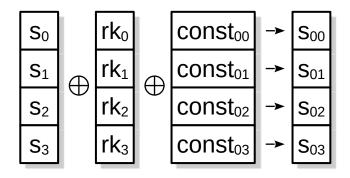
 $C_0 ... C_3 - выходные значения;$

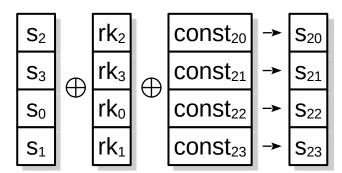
 $s_0 \dots s_3$ – входное управляющее состояние;

 $s_0^* \dots s_3^*$ – выходное управляющее состояние;

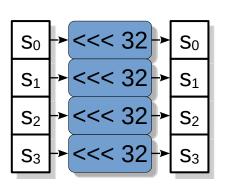
funcARX₀ ... funcARX₃ – ARX-функции (размерностью 64 бит);

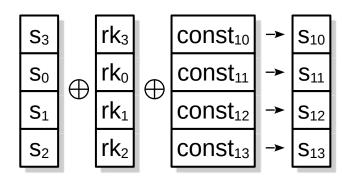
perm. state in – операции формирования входных состояний для псевдодинамических подстановок PDSbox_{0...3}.

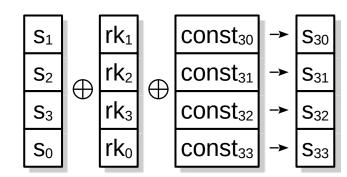

слайд 25 из 44 www.ruscrypto.ru


Формирование входных состояний для псевдо-динамических подстановок PDSbox_{0...3}

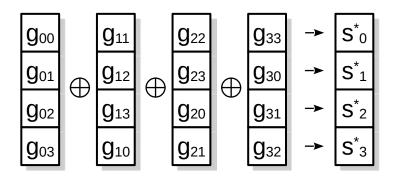
(perm. state in)


for PDSbox₀:


for PDSbox₂:


in shuffle:

for PDSbox₁:



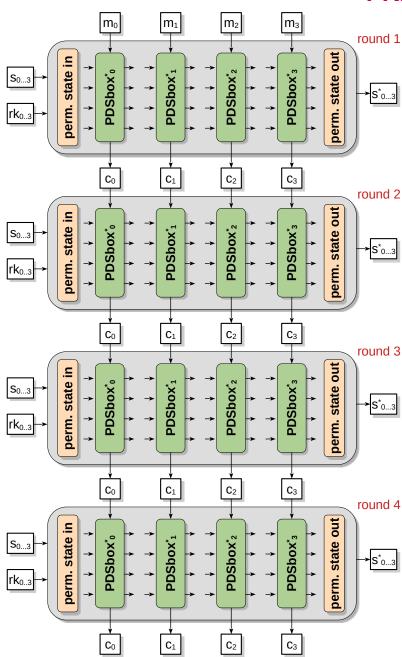
for PDSbox₃:

Операции формирования выходных состояний (perm. state out)

где:

rk₀ ... rk₃ – слова раундового ключа;

 $s_{n0} \dots s_{n3}$ – входное управляющее состояние для \emph{n} -ой PDSbox;


 $const_{n0}$... $const_{n3}$ – значения констант для \emph{n} -ой PDSbox;

 $g_{n0} \dots g_{n3}$ — выходное значение с *n*-ой PDSbox для формирования нового управляющего состояния;

 $s_0^* \dots s_3^*$ – управляющее состояние для следующего раунда.

PRF pCollapserARX256-32x2

где:

m₀ ... m₃ – входные значения (4х64 бит);

c₀ ... c₃ – выходные значения (4х64 бит);

 $s_0 \dots s_3$ – входное управляющее состояние (4x64);

 $s_0^* \dots s_3^*$ – выходное управляющее состояние (4x64);

rk₀ ... rk₃ – раундовый ключ (4х64 бит);

perm. state in – операции формирования входных состояний для псевдо-динамических подстановок;

perm. state out – операции формирования выходных состояний для псевдо-динамических подстановок следующего раунда;

PDSbox₀ ... PDSbox₃ – псевдо-динамические подстановки (4x64x64).

Исследование производительности pCollapserARX256-32x2:

В приложении Б приведён исходный код последовательной реализации pCollapserARX256-32x2 на языке С, а также результаты моделирования и тестирования производительности.

Для тестирования производительности использовался компьютер на базе процессора Intel Core i5-7500@3.40GHz (Max 3.80 GHz), компиляторы gcc 9.3.0, usuba (https://github.com/usubalang/usuba) и операционная система GNU/Linux Ubuntu 20.04.

Таблица 1. Результаты тестирования производительности pCollapserARX256-32x2

Алгоритм	Тип реализации	Скорость на одном ядре, Мбайт/с	Производи- тельность, такт/байт
Кузнечик	последовательная, SSE, язык Си [1]	170	22,4
	параллельная, SSE (4 экземпляра) [1]	360	10,6
Магма	параллельная, AVX2 (16 экземпляров)[5]	1030	3,6
ChaCha20	параллельная, usuba (32 экземпляра)[3]	3300	1,02
pCollapserARX,	тривиальная, последовательная, язык Си	134	28,4
256 бит	последовательная, usuba std, язык Си	182	20,9
	последовательная, usuba std, clang, язык Си	590	6,4
	последовательная, AVX2, язык Си	798	4,8
	параллельная (8 экземпляров), компилятор usuba, AVX2, язык Си	1400	2,8

Исследования свойств псевдо-динамических подстановок ARX:

Учитывая доступные вычислительные возможности, были проведены экспериментальные исследования линейных и дифференциальных свойств для ARX-функций размерностью 12 и 24 бит. В данном случае, таблицы линейных аппроксимаций (LAT) и таблицы распределения дифференциалов (DDT) рассчитывались частично, для небольшого количества элементов этих таблиц.

Это вызвано тем, что целью был не поиск максимальных значений в таблицах LAT и DDT, а демонстрация возможностей получаемых псевдодинамических подстановок — когда объединение ARX-функций, имеющих откровенно слабые криптографические свойства, в структуру псевдодинамической подстановки позволяет получать свойства эквивалентных подстановок (Equivalent sbox), близкие к свойствам случайно сформированных подстановок аналогичной размерности.

Кроме этого, показано наличие эффекта усреднения значений LAT и DDT при динамическом изменении состояния псевдо-динамических подстановок (Dynamic sbox) [6]. Предполагается, что свойства ARX-функций и получаемых псевдо-динамических подстановок будут сохраняться при масштабировании до 64 бит. Результаты вычислений показаны в таблице 2.

Таблица 2. Результаты исследования свойств псевдо-динамических подстановок ARX

Тип подстановки	#tested sbox	max bias (LAT)	max N _D (DDT)	min degree	algebraic immunity		
	n = 12 b	it, ARX-function with	: 4 add, 8 rol				
Random sbox 12x12 (non-bijective)	100	0.0432129	20	11	4		
ARX_2x6_4a8r	4	0.127	268	5	2		
Equivalent sbox 12x12	100	0.0507812	20	11	4		
Dynamic sbox4x12x12	100	0.0035986	1.84	>11	-		
- «» -	1000	0.0001137	1.24	>11	-		
n = 24 t	oit, ARX-fun	ction with: 4 add, 8 r	ol (partial computati	ions)			
Random sbox 24x24 (non-bijective)	100	0.000479341	20	23	-		
ARX_2x12_4a8r	4	0.0012017	74918	9	-		
Equivalent sbox 24x24	100	0.0006589	20	23	1		
Dynamic sbox4x24x24	100	0.0000498	2.56	>23	-		
- «» -	1000	0.0000098	2.174	>23	1		
n = 64 bit (estimated values)							
Equivalent sbox 64x64	-	~ random_sbox64	~ random_sbox64	63	-		
Dynamic sbox4x64x64	-	~ ideal bias	\sim ideal N_D	>63	-		

слайд 32 из 44

Выводы:

Показано, что объединение ARX-функций, имеющих откровенно слабые криптографические свойства, в структуру псевдо-динамической подстановки позволяет получать свойства эквивалентных подстановок, близкие к свойствам случайно сформированных подстановок аналогичной размерности.

Исходя из перемешивающих свойств и обеспечения динамического режима работы псевдо-динамических подстановок, а также свойств ARX-функций и 2-кратный запас по раундам, стойкость pCollapserARX256-32x2 оценивается не ниже 256 бит.

Содержит простые операции и имеет заложенные возможности экстремальной параллелизации обработки данных, что позволяет делать эффективные программные и аппаратные реализации для различных процессоров и аппаратных платформ.

Основное назначение – применение в качестве высокопроизводительной PRF в режимах, где не требуется обратимость преобразования: AEAD, CTR, Sponge-конструкции и др.

Для задач легковесной криптографии pCollapserARX легко масштабируется путём изменения размерности слов (например, ARX64-8x2, ARX128-16x2).

Контактные данные

Поликарпов Сергей Витальевич

polikarpovsv@sfedu.ru

Румянцев Константин Евгеньевич rumyancev@sfedu.ru

Прудников Вадим Александрович

prudnikov@sfedu.ru, +7 919 896 14 27

слайд 34 из 44

слайд 35 из 44 www.ruscrypto.ru

Приложение А. Список источников

1. A.S. Rybkin, On software implementation of Kuznyechik on Intel CPUs, Mat. Vopr.

Kriptogr., 2018, Volume 9, Issue 2, 117–127. DOI: https://doi.org/10.4213/mvk255

- 2. Нестеренко А.Ю. О программной реализации алгоритмов шифрования с аутентификацией. https://www.ruscrypto.ru/resource/archive/rc2021/files/02_nesterenko.pdf
- 3. Darius Mercadier and Pierre-Évariste Dagand. 2019. Usuba: high-throughput and constant-time ciphers, by construction. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 157–173. DOI:https://doi.org/10.1145/3314221.3314636
- 4. Поликарпов С.В., Кожевников А.А., Румянцев К.Е., Прудников В.А. Псевдослучайная функция PCOLLAPSER, обеспечивающая экстремальный параллелизм обработки информации // Известия ЮФУ. Технические науки. 2019. N5 (207). С. 88-100.
- 5. Русев А.А., Сонина Л.А., Щербаков Д.А. Высокопроизводительные программные реализации алгоритмов шифрования Кузнечик и Магма на российских процессорах Эльбрус с учётом архитектурных особенностей.

https://www.ruscrypto.ru/resource/archive/rc2021/files/12_rusev_sonina_sherbakov.pdf

6. Поликарпов С.В., Румянцев К.Е., Кожевников А.А. Исследование линейных характеристик псевдодинамических подстановок // Известия ЮФУ. Технические науки. 2015. Май. Т. 166, N5. С. 111-123. URL: http://old.izv-tn.tti.sfedu.ru/wp-content/uploads/2015/5/11.pdf

слайд 36 из 44 www.ruscrypto.ru

Приложение Б.

Исходный код последовательной реализации (на языке С)

```
void pCollapserARX256 32x2 encrypt block std(uint64 t *m block, uint64 t *roundkey, uint64 t *c block)
  const uint64 t const [16] = {
    0x072286acdd632df6, 0x039143566eb196fb, 0x81c8a1ab3758cb7d, 0xc0e450d59bac65be,
    0x6072286acdd632df, 0xb039143566eb196f, 0xd81c8a1ab3758cb7, 0xec0e450d59bac65b,
    0xf6072286acdd632d, 0xfb039143566eb196, 0x7d81c8a1ab3758cb, 0xbec0e450d59bac65,
    0xdf6072286acdd632, 0x6fb039143566eb19, 0xb7d81c8a1ab3758c, 0x5bec0e450d59bac6
  uint64_t in_state[4], out_state[4], m[4], s[4], y[4], g[4], c[4], w;
  in state[0] = 0; // init state values
  in state[1] = 0;
  in_state[2] = 0;
  in state[3] = 0;
  m[0] = m block[0]; // load input words
  m[1] = m block[1];
 m[2] = m block[2];
  m[3] = m block[3];
 for(int round=0; round<4; round++) // do rounds
  c block[0] = c[0]; // output words
  c block[1] = c[1];
  c_block[2] = c[2];
  c_block[3] = c[3];
```

слайд 37 из 44 www.ruscrypto.ru

Приложение Б. (продолжение)

```
for(int round=0; round<4; round++)</pre>
{ // words
  in state[0] = rol64( in state[0], 32); // shuffle (rotate) in state
  in state[1] = rol64(in state[1], 32);
  in state[2] = rol64(in state[2], 32);
  in state[3] = rol64(in state[3], 32);
  w = 0;
  { // rows
     s[0] = m[w] ^ in_state[0] ^ const[0] ^ roundkey[0];
     s[1] = m[w] ^ in state[1] ^ const[1] ^ roundkey[1];
     s[2] = m[w] ^ in state[2] ^ const[2] ^ roundkey[2];
     s[3] = m[w] ^ in state[3] ^ const[3] ^ roundkey[3];
     funcARX0 (&s[0], &y[0], &const[0]);
     funcARX1 (&s[1], &y[1], &const[1]);
     funcARX2 (&s[2], &y[2], &const[2]);
     funcARX3 (&s[3], &y[3], &const[3]);
     c[w] = y[0]^y[1]^y[2]^y[3];
     g[0] = c[w] ^ y[0];
     g[1] = c[w] ^ y[1];
     g[2] = c[w] ^ y[2];
     g[3] = c[w] ^ y[3];
     out state[0] = g[0];
     out state[1] = g[1];
     out state[2] = g[2];
     out state[3] = g[3];
```

```
w = 1;
{ // rows
  s[0] = m[w] ^ in state[0] ^ const[4] ^ roundkey[0];
  s[1] = m[w] ^ in state[1] ^ const[5] ^ roundkey[1];
  s[2] = m[w] ^ in state[2] ^ const[6] ^ roundkey[2];
  s[3] = m[w] ^ in state[3] ^ const[7] ^ roundkey[3];
  funcARX0 (&s[3], &y[0], &const[4]);
  funcARX1 (&s[0], &y[1], &const[5]);
  funcARX2 (&s[1], &y[2], &const[6]);
  funcARX3 (&s[2], &y[3], &const[7]);
  c[w] = y[0]^y[1]^y[2]^y[3];
  g[0] = c[w] ^ y[0];
  g[1] = c[w] ^ y[1];
  g[2] = c[w] ^ y[2];
  g[3] = c[w] ^ y[3];
  out_state[3] ^= g[0];
  out state [0] ^= g[1];
  out state[1] ^= g[2];
  out state[2] ^= g[3];
```


Приложение Б. (продолжение)

```
w = 2;
{ // rows
  s[0] = m[w] ^ in state[0] ^ const[8] ^ roundkey[0];
  s[1] = m[w] ^ in state[1] ^ const[9] ^ roundkey[1];
  s[2] = m[w] ^ in state[2] ^ const[10] ^ roundkey[2];
  s[3] = m[w] ^ in state[3] ^ const[11] ^ roundkey[3];
  funcARX0 (&s[2], &y[0], &const[8]);
  funcARX1 (&s[3], &y[1], &const[9]);
  funcARX2 (&s[0], &y[2], &const[10]);
  funcARX3 (&s[1], &y[3], &const[11]);
  c[w] = y[0]^y[1]^y[2]^y[3];
  g[0] = c[w] ^ y[0];
  g[1] = c[w] ^ y[1];
  g[2] = c[w] ^ y[2];
  g[3] = c[w] ^ y[3];
  out state[2] ^= g[0];
  out state[3] ^= g[1];
  out state[0] ^= g[2];
  out state[1] ^= q[3];
 w = 3;
{ // rows
  s[0] = m[w] ^ in_state[0] ^ const[12] ^ roundkey[0];
  s[1] = m[w] ^ in state[1] ^ const[13] ^ roundkey[1];
  s[2] = m[w] ^ in state[2] ^ const[14] ^ roundkey[2];
  s[3] = m[w] ^ in state[3] ^ const[15] ^ roundkey[3];
  funcARX0 (&s[1], &y[0], &const[12]);
  funcARX1 (&s[2], &y[1], &const[13]);
  funcARX2 (&s[3], &y[2], &const[14]);
  funcARX3 (&s[0], &y[3], &const[15]);
```

```
c[w] = y[0]^y[1]^y[2]^y[3];
     g[0] = c[w] ^ y[0];
     g[1] = c[w] ^ y[1];
     g[2] = c[w] ^ y[2];
     g[3] = c[w] ^ y[3];
     out state[1] ^= g[0];
     out state[2] ^= g[1];
     out_state[3] ^= g[2];
     out state[0] ^= g[3];
   in state[0] = out state[0];
   in state[1] = out state[1];
   in state[2] = out state[2];
   in state[3] = out state[3];
   m[0] = c[0]; // load input words to next round
   m[1] = c[1];
   m[2] = c[2];
   m[3] = c[3];
} // next round
c block[0] = c[0]; // output words
c block[1] = c[1];
c block[2] = c[2];
c block[3] = c[3];
```


Приложение Б. (продолжение)

```
uint32_t rol32(uint32_t word, uint32_t shift)
   return (word << shift) | (word >> ((-shift) & 31));
uint64 t rol64(uint64 t word, uint64 t shift)
   return (word << shift) | (word >> ((-shift) & 63));
void funcARX0 (uint32_t x[2], uint32_t y[2], uint32_t constants[2]) {
  uint32 t a, b, at, bt;
  a = x[0];
   b = x[1];
  at = rol32(a, 8) ^b;
   bt = rol32(b, 16) ^ a;
  a = (a + at);
   b = (b + bt);
  a = rol32(a, 16) ^ constants[0];
   b = rol32(b, 8) \land constants[1];
  at = rol32(a, 8) ^b;
   bt = rol32(b, 16) ^ a;
  a = (a + at);
  b = (b + bt);
  y[0] = a;
  y[1] = b;
```

```
void funcARX1 (uint32 t x[2], uint32 t y[2], uint32 t constants[2]) {
  uint32 t a, b, at, bt;
  a = x[0];
  b = x[1];
  at = rol32(a, 8) ^b;
  bt = rol32(b, 16) ^ a;
  a = (a + at);
  b = (b + bt);
  a = rol32(a, 8) \land constants[0];
  b = rol32(b, 16) \land constants[1];
  at = rol32(a, 16) ^ b;
  bt = rol32(b, 8) ^a;
  a = (a + at);
  b = (b + bt);
  y[0] = rol32(a, 8);
  y[1] = rol32(b, 8);
```


Приложение В. результаты экспериментальных исследований

Гистограмма распределения усреднённых значений в таблице DDT, 100 подстановок (был использован частичный расчёт таблицы)							
	pdsboxARX_2	24x24		Random sbox	24x24		
[minval = 0.16, maxval = 2.56, step = 0.12, counted values = 469762020]			[minva	l = 0.3, maxval = 1.94 values = 46976	, step = 0.082, counted 52020]		
num bin hist_x hist_y			num bin	hist_x	hist_y		
0	0.160000	2	0	0.300000	34		
1	0.280000	560	1	0.382000	1449		
2	0.400000	36006	2	0.464000	32193		
3	0.520000	1167654	3	0.546000	397440		
4	0.640000	7027328	4	0.628000	2847586		
5	0.760000	39649383	5	0.710000	12671131		
6	0.880000	107018082	6	0.792000	36791751		
7	1.000000	168913627	7	0.874000	72612464		
8	1.120000	95997949	8	0.956000	100691648		
9	1.240000	37146470	9	1.038000	100875924		
10	1.360000	9727624	10	1.120000	88173452		
11	1.480000	2250120	11	1.202000	34756780		
12	1.600000	539387	12	1.284000	14055495		
13	1.720000	210943	13	1.366000	4461131		
14	1.840000	58472	14	1.448000	1123076		
15	1.960000	14516	15	1.530000	227248		
16	2.080000	3167	16	1.612000	37494		
17	2.200000	599	17	1.694000	5070		
18	2.320000	116	18	1.776000	603		
19	2.440000	13	19	1.858000	45		
20	2.560000	2	20	1.940000	6		

слайд 41 из 44 www.ruscrypto.ru

Приложение В.

(продолжение)

результаты экспериментальных исследований

Гистограмма распределения усреднённых значений в таблице LAT, 100 подстановок (был использован частичный расчёт таблицы)						
	pdsboxARX_24		Random sbox 24x24			
[minval	= -2.93255e-05, maxval = 3.95775e-06, counted value		[min	val = -3.01301e-05, maxval = 3 3.47048e-06, counted value		
num bin	hist_x	hist_y	num bi	n hist_x	hist_y	
0	-0.000029	2	0	-0.000030	2	
1	-0.000025	3	1	-0.000027	1	
2	-0.000021	3	2	-0.000023	4	
3	-0.000017	11	3	-0.000020	7	
4	-0.000013	9	4	-0.000016	6	
5	-0.000010	22	5	-0.000013	15	
6	-0.000006	25	6	-0.000009	17	
7	-0.000002	24	7	-0.000006	23	
8	0.000002	29	8	-0.000002	24	
9	0.000006	21	9	0.000001	21	
10	0.000010	14	10	0.000005	23	
11	0.000014	10	11	0.000008	11	
12	0.000018	14	12	0.000012	13	
13	0.000022	1	13	0.000015	14	
14	0.000026	5	14	0.000018	6	
15	0.000030	3	15	0.000022	2	
16	0.000034	0	16	0.000025	6	
17	0.000038	0	17	0.000029	1	
18	0.000042	1	18	0.000032	0	
19	0.000046	0	19	0.000036	1	
20	0.000050	1	20	0.000039	1	

слайд 42 из 44 www.ruscrypto.ru

Приложение В.

(продолжение)

результаты экспериментальных исследований

Значения алгебраической степени (algebraic degree) для ARX-функций 24х24:

funcARX0: [9, 16, 18, 20, 21, 23, 24, 23, 23, 24, 23, 23, 9, 16, 17, 19, 22, 23, 23, 23, 24, 24, 24, 23] funcARX1: [23, 24, 24, 24, 9, 16, 18, 20, 22, 23, 23, 24, 23, 23, 24, 23, 9, 16, 18, 20, 23, 24, 24, 23] funcARX2: [23, 23, 23, 24, 23, 23, 9, 16, 18, 20, 22, 23, 23, 24, 24, 23, 24, 24, 9, 16, 18, 20, 21, 23]

funcARX3: [22, 23, 24, 23, 24, 23, 23, 23, 9, 16, 18, 20, 23, 23, 23, 23, 23, 24, 24, 23, 9, 16, 18, 20]

минимальные значения: $\lambda s = 9$

Значения алгебраической степени (algebraic degree) для эквивалентных подстановок PDSboxARX 24x24:

eq sbox: [23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24, 23, 24]

минимальное значение: $\lambda s = 23$

Приложение Г.

Результаты тестирования производительности pCollapserARX256-32x2 на одном ядре процессора Intel Core i7-11700K (Max 5.0 GHz), использовались

реализации алгоритмов программы OpenSSL 1.1.1f

реализации алгоритмов программы OpenSSL 1.1.1f								
Алгоритм	Тип реализации	Ск	орость (ра:	йт/с	Макс. производи-			
		16	64	256	1024	8192	16384	тельность, такт/байт
Кузнечик-ecb	OpenSSL 1.1.1f	161	182	198	205	206	206	24,3
Магма-cnt	OpenSSL 1.1.1f	90	95	96	97	97	97	51,5
sm4-ecb	OpenSSL 1.1.1f	177	187	189	189	189	189	26,5
sha3-256	OpenSSL 1.1.1f	42	169	411	498	563	572	8,7
sm3	OpenSSL 1.1.1f	52	127	238	312	362	365	13,7
ChaCha20	OpenSSL 1.1.1f	626	1057	3992	7522	8317	8411	0,6
pCollapserARX, 256 бит	тривиальная, последовательная, ісх, язык Си	154*	308	-«» -	-«» -	-«» -	-«» -	16,2
	последовательная, usuba std, clang, язык Си	386*	772	-«»-	-«» -	-«» -	-«» -	6,5
	последовательная, AVX2, компилятор icx, язык Си	613*	1226	-«»-	-«» -	-«» -	-«» -	4,1
	параллельная (8 экземпляров), компилятор usuba, AVX512, язык Си	173*	693*	2770	-«»-	-«»-	-«»-	1,8

^{* –} получено делением от основного значения, кратно размеру блока