S
(@' I ! Learn. Connect.
Q PycKpunto 2013 Collaborate. i‘g.a.ebc.m

http://www.ruscrypto.ru/conference/

AHanun3 kavyectBa 1O ¢ TOUYKM 3peHus
Oe3onacHOCTU: MeXAyHapOAHbLIN ONbIT

INTykauknn Arnekcein, KOHCynbTaHT no 6e30rnacHoOCTU

http://www.ruscrypto.ru/conference/

BbIrOOHO JIN SAHUMATBCH
AHAJIN3OM KAHECTBA NO?

NMoyemy BbIrogHO 3aHMMATbLCA aHaNM3oM Kadectsa MO?

[1n3anH v
apXuTeKkTypa

« 1X

BHegpeHue
)

TecTbl
NHTErpauunmn

N [0).4

BoeBou
3anyck

« 30X

BeTta-
TecTMpoBaHue

« 15X

NMoyemy BbIrogHO 3aHMMATbLCA aHaNM3oM Kadectsa MO?

HanpgeHo CtonmocTb CtommMmocTb
dTtan KPUTUYECKUX cTpaHeHus 1 CTpaHeHus Bcex
P ycTp
YA3BUMOCTEN YA3BMMOCTHU yA3BMMOCTEN

TpeboBaHus $139
[wn3anH $455
MporpaMmmupoBaHue $977
TecTpoBaHue 50 $7 136 $356 800
Mopnepxka $14 102 $2 115 300

NMoyemy BbIrogHO 3aHMMATbLCA aHaNM3oM Kadectsa MO?

HanpeHo CtoumocTb CtoumocTb
JTtan KPUTUYECKUX ycTpaHeHus 1 yCTpaHeHua Bcex
YA3BUMOCTEN YyA3BMMOCTU yA3BMMOCTEN

TpeboBaHus $139

[OwnsanH $455
MporpamMmmmnpoBaHune 150 $977 $146 550
TecTupoBaHue 50 $7 136 $356 800
Moppepxka $14 102

Boero | 200 | | Ss033u

« JlaHHble pacyeTbl NPUMEHUMBI K KPYMHbIM pa3pabotymkam MO

ECJIN HE OEHBI'U, TO 4UTO
MOTUBWUPYET HA AHAJIN3
KAYECTBA 107

Yto TpebyeT MuHucrepcreo O6opoHbl CLLUA?

« Pa3pgen 933 «IMPROVEMENTS IN ASSURANCE OF COMPUTER
SOFTWARE PROCURED BY THE DEPARTMENT OF DEFENSE»
3akoHa «Defense National Defense Authorization Act of 2013»

— ObssaTenbHbI KOHTPONb Kavectsa 10O, npnobpetaemoro
MwuHuctepcteom O6opoHbl CLLA

« 3agada gocTturaetcs NpMMeHeHneM
— aBTOMAaTU3NPOBAHHbLIX CKaHepoB Ge30nacHoCTY,
— TeCTUpoBaHNEM,
— aHanu3oMm Koaa,
— NnT.A.

TpeboBaHun y MuHuctepctea O6opoHbi CLLUA Hemano

. Cybersecurity-Related
1.1 Lead and Govern \ Policies and Issuances

- " " Ceveloped by the
ifm s s | T —— | o e
pr—————

Dol CI0 for Cybersecurity
|mmumil| WWI || wm'n | psagt=Copa e b n Tararam bl o) | Cyomms Crmrsborn DMAE 0Y

Last Updated: March 15, 2012
‘Send questionsisuggestions to
infogithecsiac.com

A GO El

21 Secure Data in Transit

4.1 Develop and Maintain Trust...

= OA
3.1 Understand Battlespace

(5234, 30T}, SEN1S), B0 3Bl
e ChEEP-21
Meter I Py b Ntz 1 Py om T 25
e o | i
[T NemseLT Taers e
[| s I e
L by -
=] ——
e b | 1 Commttution A% K. Tt 1o £ 800 |/
32 Prevent and Delay Attackers... AT —
and 3.2 Prevent Attackers from Staying... = =
| cemmmpa~s || Swms |
St G || s e e ——
[NACEI8001, Foreign Mbtary Saies o | WACELHOm T 2 vt 2y Tite 18 (53127 st wms |
== T | [T Bt e Tt
o O Tha S e 4 aa) amtries Pestacion B 1 ino Age
e Teen e Do O ot e e eater
asn
and Precarim gt Ll
e gt B WED &2, Hriorad Py for 10
Sacurty of Nl Security Tamcom and
e o et Sytiarrs
"é = T M T Pt
- L — et Aurmeed v
eaurma ured i N3 Commmn.
| e |
™
Foreipn Nesions
2 2 Manage Access
Frameecrt. nag N
FEADTT e
v 1.3 Develop the Workforce ol e Comemn € Marchrd bor st of KEPC-12
CNEEPS — CHED 1 nd
ST Nt Pecy b e s]E'.‘:"‘.....-| | TEwPES T areumesres
e L3 Frotacton of Seesits el Duts Ioboermmion Zsmmrwecn [14] e ars i Aot Facieias
[ey Clalten) Sryouograhle Bhamalen | | | gt oo Puriier RN | coompuitr btk Eaforton (DY L
e ot Nt oy ot o forhe et S0 0B
e g o S || T ; imdig e
IS
-y Sl Fer Conmed e Pl e gkl COMSEE:
Syatmm 1581
Vesberal Tk St o Syt s M ABCUT THIE CHART
Rt - = This chart arganizes 1A poiicies and guidance by GlIA Srategic
sErant eteqaring Factins ar Fromcsian 50al and Ofice of Frimary Responsibily (see Color Key). Itis
“.ﬁm" Firas T g Intended 10 show a1 14 or LA-reiated polices 3 Component may
P PR ne=dl 0 compiy with and direct uzsrs o e ful et
Dl irmemt s e Al i Ty e : ﬁ'ﬂﬂ. = This chart atiempts to Ink ko S most authoritatve source for
e T E£ach document. We check the Integrity of the Inks on a reguar
) st e CAC soastaton | DTMO8-004, Py G o 00 basts, but have no contmi pver e sRes inked 10, 50 YoU may
‘/ 1AF Tor St \\ Geidarcn /} occasionally SYPESiENCE an eror message due o probiems at
artner ength the source SBe or the site’s decision fo move: S document.
(/ 2.3 Assure Information Sharing \ Flease istus know If you believe the IRk Is no longer vald.

& Inme slscironic version, sach policy and OFR iz hyperinked to
the ful text or respective site onine. To use, click an the box.

® Policies n bailcs ndicate the document I marked for mted
distribubion of no pubic-facing hyperink ks curmenty avalabie.

@ Eowes with red borders reflact recent updates.

@ Note: Users of the [Pad, [Phone or IPod Touch may find they
£an view this Chart but Sat e hyperinks ars mopersbis,
because of Appic’s decision net o ully support ceriain Adobe

Eetena products. For those wha desine 3 workaround for this issue,
P there are apes In the Tunes stome for less Man §1.00.
‘) e e Distribution Statement A: Approved for Public Release. Distribution is unlimited.
Ia colcwchar iml

Yto TpebyeTcsa B rocopraHax CLUA?

« 5.02.2013 NIST ony6nukosan 4-to Bepcuto SP800-53 «Security and
Privacy Control for Federal Information Systems and Organizations»

— ObssaTeneH anga rocygapcTBeHHbIX opraHos CLUA
— ['pynna 3awuTtHbIX Mep «Systems and Service Acquisition»

— AbBcontoTHO HoBbIN Bnok SA-11 «Developer Security Testing and
Evaluation»

e 7 3aWMTHbIX Mep (Ha BbIGOP)
— CpepfcTtBa aHanm3aa koaa
— AHanm3 ya3BnuMoCTeN U yrpos
— HesaBucmmas oueHka nnaHa aHanuaa 3aluLeHHOCTH
— Py4HOM aHanu3 koaa
— [leHTecThl
— MogenupoBaHue yrpos
— [lNpoBepka obnactn TecTupoBaHus/aHanmaa

Yto TpebyeTcsa B rocopraHax CLUA?

B NIST SP800-53 Takke BBeaeH HOBbIN BSIOK 3aMTHbIX Mep SA-12 no
KOHTPOJTO Lleno4Yek NoCTaBOK KOMMOHEHTOB MHAOPMaALMOHHBLIX CUCTEM

— Bbl yBEpEHbI, YTO B MPUOOPETEHHOM BaMW KOAE HET CryYanHbIX UMK
HaMepeHHbIX 3aKnagoK?

— OueHka 00 Bbibopa cucrtemsl, 1O ee ncnonbsoBaHusa n O ee
obHoBNeHusd

 MexaHu3mbl peanusauumn SA-12
— CTatnyeckmn n auHaMmmn4yecKkumn aHanus
— Cumynaumsa
— TecTupoBaHue B pexunme «benoroy»/«ceporo»/«4epHoro» Aumka
— [leHTecThl
— Fuzz testing
— KpunTtorpadgundeckme xawum
— N T.A.

NYYWUE NMPAKTUKHA

YTo Takoe 3awimieHHbIN Koa?

* 10% doyHKUMIN 3aLLNTBI
— MC3
— ACL
— Kpuntorpadous
* 90% 3awuLeHHbIX QYHKLNN
— 3awuTta OT nepenosIHEHNS
— [MpoBepka BXOAHbIX AaHHbIX
— KoHTpOnb BbIXOAHbIX AAHHbIX

 TpebyeTcs HenpepbIBHbIN NpoLecc obecrneyveHnss n NoBbILLEHNSA
kayecTBa 10, BKNtovaoLWnn peleHme pasnuyHbix 3agad

Jlyywine npaktukm no obecneyveHuto kayecrtna MO

 Bkno4yaeT He ToNnbko
aHanus kadvectBa [10,
HO N TaKxke

* [lpaBuna
3alMLLEeHHOro
nporpamMmmmpoBaHug

« PerynspHble TPEHUHIM
1 nporpamMmbl
NOBbILLEHUS
OCBEAOMIEHHOCTM

 MogenupoBaHue yrpos
 TecTnpoBaHune
 UNT.A.

ARCHITECTURE & DESIGN

@ Architectural Risk Analysis

REQUIREMENTS

@ Requirements Engineering

@ Attack Patterns

@ Code Analysis
@ Coding Practices

MANAGEMENT

@ Project Management

@ Traming and Awareness

@ Assurance Cases

@ Business Case Models

@ SOLC Process

@ Assembly, Integration, & Evolution
@ Deployment & Operations

@ Incident Management

@ Penetration Testing Tools

Additional resources in all categories

Cisco Security Ninja: Bce Ha4YMHaeTCsA C TPEHNUHIOB U
NOBbILWEeHNA 0CBeAOMNIEeHHOCTH

e CTuUmMynupoBaHue N3yvyeHus
CSDL Wnpokmm cnekTpom
coTpyaHukoB Cisco

e Cwuctema pacrnosHaBaHus U
MOTUBALUMN COTPYOHMKOB

* [lpumeHeHune npaktnk CSDL B
paboTte

Microsoft Security Development Lifecycle (SDL) un Agile

One-time

® LIIMK.” 3a|.|.|,|/”-|-|,‘ Requirements TB Ce6ﬂ
paSHI/I‘-IHbIe 3

— TpeHuHrn
— AHanus pv

Verification \
Tasks | N\

Training

Design

; Response
Review P

v Plannin
e Core training J

Response

_ MO.D'eJ'II/IpC Planning
— MexaHunsm

b ¢ T Design
4 EET
- PearMpOBC Verification = ,L

— UT.0. - /\

Response
. Tpa,El,I/ILI,I/IOHHE Planning

52

oro)

u
aLUeJ!nbeH lu‘_l -

Cisco Secure Development Lifecycle (CSDL)

?‘-oduct Securny Re
YWirg

Perform GAP
Analysis

Identify and
Address
Security /[§
Threats /[¢

EMC SDL

SDL v' Training v" Code scanning v Code signing
Standard v Requirements v' Security testing v* Assessment
anaar v' Threat modeling v Documentation v Response

PRODUCT SECURITY POLICY

Secure Design

ecure
Implementation

v Authentication & access v Input validation
control v" Injection protection

v Logging v Dir?cf?{y traversal

: protection

v Network security v Web and C/ C++

¥ Cryptography and key coding standards
management v Code Signing

v’ Serviceability v Handling secrets

v’ Secure design principles

Security Development Lifecycle

SDL pa3HbIX KOMNAaHUN NOXO0XN MexXay cobou

> Requirements)

Implementation* > Release

At:tmlle

*Formalize *Perform
security Threat
requirements Modeling
based on

EMC Product
Security
Policy
*Create

Traditional Product Development Lifecycle

=Apply secure
coding
practices

-Perform static

code analysis
«Harden
embedded
components

*Execute *Produce *Perform
security test Security code signing
strategy Configuration *Comply with
*Perform guide EMC Source
compatibility Code Control
testing in Standard
hardened

environments

*Perform
secunty
assessment
and risk
acceptance

Maintenance

*Respond to
vulnerabilities
following
EMC's
vulnerability
response

policy

BbubnuoTteka yrpo3 npu paspaboTke O yckopsieT Bpems

pa3paboTKu

DFD element

=)

Characteristic

Threat B2

User or administrator

Unauthenticated user

User impersonation

User or administrator

Privileged

Privilege abuse

Dataflow Unauthenticated server Server spoofing

Dataflow Unauthenticated client Client spoofing

Dataflow Flaintext transmission of sensitive data over a network Metwork sniffing

Dataflow Transmission of authentication credentials Replay attacks

Dataflow Transmission of session identifiers or tokens Session hijacking
Predictable password or

Process Generates password or encryption key encryption key

Process Uses cryptography Attacks on cryptography

Process Is written in C/C++ Buffer overflow

Process |s written in C/C++ or perl Uncontrolled format string

Process Executes SQL queries using input data SQLinjection

Process Executes LDAP gueries using input data LDAP injection

Executes operating system commands (e.g. system(),

Process exec(), open()) using input data 0S command injection

Process Exposes a user web interface Cross-site scripting

Process Exposes a user web interface Cross-site request forgery

OueHKa PpUCKOB ANsl KAXA0MW Yyrpo3bl NO3BOSISAET Yy4ecTb
npuopuTeThbI

Impact

Does the attack allow unauthorized access to private or confidential information? Mo
Can the attack be used to cause unauthorized changes to the system or external systems? |Yes
Can the attack be used to cause unaudited changes to the system or its data? Mo
Can the attack be used to cause a permanent” denial of senice? Yes
Exploitability

Can the attack be conducted through an unauthenticated interface? Yes
Does the attack require a highly privileged®™ access role? Mo
Can the attack be conducted remotely? Yes
Does the attack require custom exploit code? Mo
Does the attack require a special condition (e.g. an uncommaon deployment or configuration, No
a race condition with a very limited window of exposure, etc)?

Does the attack require first compromising other components or external systems (e.g. DNS, Ves
routing, etc)? ..EI

CVSS score: 8.8

Risk: CRITICAL

PekomeHAaumm no 3awiueHHOMY NPOorpaMMmnpoBaHnio

Security Development Lifecycle: Develop: Secure Coding Reference

[Plan ‘[@Design ‘[Develop H Test ‘[Document ‘

This page containg links to detailed guidance to help software developers comply wit

= Perform adequate input validation

= Prevent common injection issues There are a few simple ways to limit the risk of security vulnerahilities in source code susceptible to Buffer Overflaws.

= Preventing S0L injection

=] ti LDAP iniecti Contents [hide] Q
B FrEVENTIN Injectian
3 . ! Sl 1 ¥hatis a Buffer Overflow?
" F'reventlng command mJECt'Dn 2 Preventing or limiting huffer overflows
s XML injection 2.1 BEST: Avaid unchecked buffers

2.1.1 Proper hounds checking

= Preventing directary traversal
2.1.2 Use safe functions and data structures

s YWeb coding standards

3 SeeAlso
= Preventing cross site scripting (XSS) =
= Preventing HTTP response splitting What is a Buffer Overflow?
= Cross-sits request forgery (SRF) A Buffer Overflow occurs when an application defines a buffer of a fixed or loosely-controlled length, and data is copied it
= Clickjacking the program's address space at the buffer location in memary, patentially overwriting critical data, registers, and if the at
= Preventing session fixation application crash), code or command injection, and arbitrary code execution. The severity of a buffer overflow attack mas
? ; SYSTEM or root containg an exploitable buffer overflow, then an attacker may gain control of the host by injecting shellc
= Securing cookies
= Securing sensitive web data et
s C/C++ coding Preventing or limiting buffer overflows
= Preventing buffer overflows
= Ayoiding unsafe functions BEST: Avoid unchecked buffers
= Safel},r using Printf'scanf The most effective methad far limiting the effectiveness and risk from buffer overflows is to avaid them altogether by ensu

= Compiler settings steps are taken to ensure data being written does not overflow the buffer.

= Memory hardening (see compiler settings) Proper bounds checking

= Embedded compaonents = Make sure that buffer writes are limited to the length of the buffer by checking the incoming data carefully. Understan

= Embedded component patching and set defaults accordingly. For example, if you are writing code to read file names, be aware of the file system limi

= Embedded component hardening multi-byte characters (and remember to double or triple all upper bounds accaordingly).
= Handling sensitive data Use safe functions and data structures

= Ayoid allocating fixed-length buffers. Instead, if the language supports them, consider using sel-sizing array types or

PekomeHpgauum no tectupoBaHuio NO

Using the Security Test Library

The Security Test Library is a resource to assist product testing engineers to identify and specify security test cases that are required to ensure products do not ship w
Security Test Library (STL) should be used in the following manner:
1 Underst%d and document the architecture of the product under test. The PS0 can assist in this activity, and is working on making tools available to make this &
2. (Optional, but highly recommended) Use the architecture information to create a Threat Model, which highlights risk in the product based on certain functionality.
3. Using the architectural information and/or Threat Model, identify the test procedures from the lists below that apply to the product.
4. Use the identified security test procedures to create security test cases to execute during the product testing cycle.

A couple of things to keep in mind:

= Each test procedure below describes recommended and generic methods for testing for each vulnerability type. Certain test procedures may suggest other testing
beyond the scope of the particular test procedure.

= Test procedures are designed to be repeatable for like inputs. For example, the test procedure for malware scanning indicates the test should be run "for each produ
should be created, each following the same procedure for each module in the product.

STEP 0 - Known Vulnerability Detection

P(oldlu.c‘l Characteristics [for Test Aplplicahility)l ' Tegt lIl:'rncelellllJre

[Product ships binary packages (on any media or downloadahble) Testing for malware (Binary Image)

'|F‘r0|:|uct embeds an appliance system image .|Testing for malware (Appliance Image)

|F'r0|:|uct or components the product embeds open network ser\rices:|Security vulnerability scanning

|F'r0duct has a web interface and/or embeds a web server :|Security vulnerability scanning

|F'r0duct will be deployed in a US/mon-US government facility |Testing in hardened environments

STEP 1 - Basic Security Testing

| Product Characteristics (for Test Applicahility)_ | Test Procedure
Product performs database o_perations and allows externally—contrulled in_put! or embeds a database server Testing for S0L injection

Product performs user authent_ication using I__DAF' or AD 'Testing for LOAP injection

|F'r0duct containg CLls, or executes system-level commands and allows externally-controlled input |Testing for command injection
:|F'r0duct uses ¥hL-based communication protocols or accesses XML-encoded data (from files or the netwark, etc) |Testing for ¥ML injection

|F‘r0duct uses a web interface (HTML, Javascript, Flash) andfor embeds a web server serving static or dynamic content |Weh security

|F‘roduct uses aweb interface (HTML, Javascript, Flash) andfor embeds a web server senving static or dynamic content _|Testing for cross site scripting (XS5

Kak TectupoBaTtb?

Yem NMPOoBEePATb. ACCATKU PaA3NINYHbIX MHCTPYMEHTOB

« Cratnyecknn aHanunsa
— FxCop
— CAT.NET
— PREFast

e J[lMHamMmun4eckmn aHanms
— PasnunyHble fuzzer’ol
— AppVerifier

« bubnmotekn gnsa 3almLEHHOro NPorpaMMmnMpPoBaHns
— StrSafe
— Safelnt
— AntiXss

Kak oueHnTb pe3ynbTaTtbl TectTupoBaHus NO?

TEST CASE: Testing for Malware {(Appliance Image)

Test Characteristics
Applicable PSP (3.0): 1.2.3.3

= Applicable CYWE(s): CYWE-506 Embedded Malicious Code
= 3TEP: n— Known vulnerability detection

[edit]

[edit]

= Objective: Perform a scan of a running master systemn image for an appliance to identify malware {spyware, trojan horses, backdoors, rootkits, or viruses).
= Long description: Using platform-appropriate makware scanning tools, identify if a system image for an EMC product, before being released to manufacturing or custormers {and then duplicated to customer

enviranments) contains malware such as viruses, trojan horses, worms, rootkits, or spyware.

= Test Applicability: This test case applies to any product that is released to customers (internal or external). This test case applies to each product appliance system images.

Architectural Representation/DFD
Mot Applicable

Testing Procedure

[edit]

[edit]

Step Action

Qutcome

Pre-test Setup ||Install the product systern image under test in a lab environment.

[SUCCESE] The _procluct is installed and conﬁg_ured in a lab environment.

Pre-test Setup ||Configure the product system image under test to match an appropriate customer-targeted release configuration.

|[SUCCESE] The product is configured as a customer may install and

operate it.

Select and download appropriate mahware scanning tool(s), selected from the tools below (see Resources). Install each

Pre-test Setu : : i
4 |[toal in the test system image. Update malware definition rules.

'[SUCCESS] The malware and rootkit scanning tools are installed on the

system image, with latest malware definitions available.

1 Run the malware scanning tool on the system image using the most aggressive settings possible (with hueristics to find
new malware, etc) and with all logging enabled. Cleaning any infections are not required at this time.

I[SUCCESE] Malware scanner identifies O infections on the system

image.
[FAILURE] Mahware scanner detects one or more infections. Nate the
infected files and which malware infected them for follow up.

5 Run the rootkit scanning tool on the system image using the most aggressive settings possible (with hueristics to find
new malware, etc) and with all logging enabled. Cleaning any infections are not required at this time.

[SUCCESE] Rootkit scanner identifies O infections on the systerm image.
[FAILURE] Rootkit scanner detects one or more infections. Naote the
rootkit names and locations for follow up.

Post-Test Data ||For each malware infection finding collect infected file names and the malware that infected them, or for rootkits the

Catiatig s |[[SUCCESE] List of infections and rootkits identified, if any.
Reporting If a defect is discovered using the above Procedure, file a defect ticket that includes the Title of the test case andfor [SUCCESS] Any identified defect is recorded and classified
Defects Case ID and the list of infections as noted above. File the defect ticket with Critical/Must-fix severity. appropriately.
[[T

iy

YpoBHM 3penocTtn obecnevyeHusn kayecta NO

AKTUBHOCTU B 3aBUCUMOCTMU PeakTnBHbIN MNpoakTuBHLIN MHTerpuposaH | OnTumanbHbIN
OT YPOBHS 3penocTu “HEIM

Identify Product Security

liaisons

Pre-GA Risk Assessment + + +
Security Alert Tracking + + +
Vulnerability Scanning + + +
Full Engineering training + +
Threat Modeling @ Design + +
Source Code Analysis + +
Security Testing against + 4
Product Security Standard

Supply Chain Protection +
Independent Penetration +

Testing

A 4YTO B POCCUN?

Poccunckue tpeboBaHmna no aHanmily KayecTsa Koaa:
¢omHaHCcOBbIe opraHusauum

« Takke OOKyMeHTauusa Ha paspabaTtbiBaembie ABC nnu
npuobpeTaemslie rotoBble ABC 1 nX KOMMOHEHTLI AOMKHA coaepXaTb
onncaHne peannsoBaHHbIX 3aWMUTHBIX MepP, NPeanpUHATLIX pa3paboT
YMKOM OTHOCUTESNIbHO Be3onacHOCTU pa3paboTkm n 6esonacHoOCTn
NOCTaBKU

— 7.3.5CTO BP MBBC 1.0

 Pasgenbl 6.3, 6.5 1n 6.6 PCI DSS, nocesLleHHbIe NPOBEPKE KayecTBa
koaa, 6e3onacHon paspaboTke u perynspHomy TectmpoBaHuto O Ha
npeameT TpeboBaHu ctaHgapTa PClI DSS n gpyrux nydwimnx npakTuk

 CrtangapTt PA DSS nosfiHOCTbIO NOCBSLEH BONpocam pa3paboTku
NaTeXHbIX MPUITOXEHUN

— OcobeHHo pasgen 5

 PC «TpeboBaHns kK BaHKOBCKUM NPUIIOXEHUSM U pa3paboTymkam
GaHKOBCKMX NPUITOXKEHUNY (NS1aH)

NMNoctaHoBneHue lNpaButenbctBa Ne1119

* Yrpo3sbl 1-ro tTvna aktyanbHbl 4nsd MHPOPMaLUOHHON CUCTEMBI
nepcoHarnbHbIX AaHHbIX, eCrlK ANd Hee, B TOM YuCne, akTyasibHbl Yrpo3sbl,
CBSAI3aHHbIE C HANU4YNEM HELOKYMEHTUPOBAHHbLIX (HedeKnapupoBaHHbLIX)
BO3MOXXHOCTEN B CUCTEMHOM NporpaMmMHOM obecneyeHnmn, NCnonb3yeMoM
B COCTaBe MH(POPMaLMOHHOWN CUCTEMBI MEePCOHasbHbIX AaHHbIX

* Yrpo3sbl 2-ro Tuna aktyanbHbl 4nsd MHPOPMaLUOHHON CUCTEMBI
nepcoHarnbHbIX AaHHbIX, ECNN ANS HEe, B TOM YuCne, akTyasibHbl Yrpo3abl,
CBSAI3aHHbIE C HANU4YNEM HELOKYMEHTUPOBAHHbLIX (HedeKnapupoBaHHbLIX)
BO3MO>XHOCTEWN B MPUKNagHOM nNporpaMMHOM obecneyeHunu,
NCnosib3yeMoM B coCTaBe MH(POPMAaLMOHHOWN CUCTEMbI NMepCOoHanbHbIX
OaHHbIX

* Yrposbl 3-ro Tuna akTtyanbHbl 4na MHPopMaLNOHHOW CUCTEMbI
NepcoHarnbHbIX AaHHbIX, €CNU ANS Hee He akTyallbHbl Yrpo3bl, CBA3aHHbIE
C HaNn4ynemM He4OKYMEHTMPOBAHHbIX (HeOEKTapUPOBaHHbIX)
BO3MOXHOCTEN B CUCTEMHOM M NPUKIagHOM NporpaMmmMHOM obecriedeHnn,
MCNoJSib3yeMOM B cOCTaBe MH(POPMaLNOHHON CUCTEMbI NEePCOHAbHbIX

Poccunckue tpeboBaHmna no aHanmily KayecTsa Koaa:
nepcoHaribHble AaHHble

« B cnyyae onpegeneHna B KadecTBe akTyasnbHbIX yrpo3 6e3onacHoCTu
nepcoHanbHbIX AAHHbIX 1-ro 1 2-ro TMNOB AOMNOMHUTENBHO K Mepam
no obecne4vyeHnto 6e30MNacHOCTN NepcoHaribHbIX JaHHbIX MOTyT
NPUMEHATLCS crneayoLine mepbl

— [NpoBepka cUCTEMHOrO 1 (1UNn) NPUKNaAAHOro NPOrpaMMHOro
obecrneveHuns, BKNYas NporpaMMHbIN Kod, Ha OTCYTCTBUE
HeaeknapupoBaHHbIX BO3MOXXHOCTEN C UCMOSIb30BAHUEM
aBTOMaTU3NPOBaHHbIX CPeacTB U (Mnn) 6e3 NCNonNbL30BaHUS TaKOBbIX;

— TecTnpoBaHue MHPOPMALMOHHON CUCTEMbI HA MPOHUKHOBEHUA

— Wcnonb3oBaHne B MHPOPMALMOHHOW CUCTEME CUCTEMHOrO U (UNn)
NPUKNagHoro NporpamMmHoro obecnevyeHmd, paspaboTaHHOro ¢
NCNoNb30BaHMEM METOLOB 3aLUULLEHHOIO NPOrpaMmMmnpoBaHUS

NononHutenbHas nHdopmauus

* «Build Security In»

— https://buildsecurityin.us-
cert.gov/

* WHcTtutyt KapHern-MennoHa
— https://www.cert.org/secure-
coding/
« Software Assurance
Marketplace (SWAMP)

— http://[swamp.cosalab.org/in
dex.html

T

Homeland
Security

Privacy and Use

MNavigational Links

Home

Mission

+ Articles [by Content Areal
+ Events

+ About Us

» FAQs

Secure Coding Sites

+ Additional Resources
DHS Swa Web Site

. DHS Software sssurance
Resources

RSS Feeds
Cantact Us

Build Security In

Setting a higher standard for software assurance

DHS Office of)
i

Build Security In Home

What is Build Security In?

Build Security In is 3 collaborative effort that
provides practices, tools, guidelines, rules,
principles, and other resources that software
developers, architects, and security
practitioners can use to build security into
software in every phase of its development.

Introduction to Software Securit

The Software Assurance
Curriculum Project

The draft Software Assurance Competency
Model is available for review, and feedback is
welcome through February 21, 2013,

Free Secure Application Development
E-Learning Classes Available; Details on
CERT Website

The article Engaging the Community:
Strategies for Software Assurance Curricula
Qutreach was published in CrossTalk,

Contribute to the Software Assurance

Curriculum Project by sharing your education
rnaterisls

The Community College Education report,
the fourth volume in the series, is now
availahle for download.

The technical note Integrating the MSwa
Reference Curriculur intg the MSIS Model

Search BST:

Search

Improve Security and Software
Assurance: Tackle the CWE Top 25 Most
Dangerous Software Errors

The Top 25 CWEs represent the most significant exploitable
software constructs that have made software so vulnerahle.
Addressing these will go a long way in securing software, both
in development and in operation. Read more and see the list
of Top 25 CWE Most Dangerous Saftware Errars on the
Software Assurance Community Resources and Information
Clearinghouse website,

Consistent with this list is the Top 10 Project by the Open
web application Security Project (OWASP), OWASP’s report
captures the top ten risks associated with the use of web
applications in an enterprise. Download the report, which
contains examples and details that explain these risks to
software developers, managers, and anyone interested in the
future of web security, for free here,

What's New

Register by February 26 for the Spring 2013 Software
Assurance Forum.

The draft Software Assurance Competency Model is available
for review, and feedback is welcome through February 21,
2013,

The updated agenda for the Winter 2012 Software Assurance
Working Group Sessions, November 27-29, 2012, is now
available.

Presentations from the Fall Software Assurance Forum
September 18-20, 2012, have been posted.

security-request@cisco.com

bnarogapto Bac -lll.lll.
3a BHUMaHue CISCO

33

